摘要:
The present invention discloses a SiC crystal, comprising: acceptor impurities that are in a concentration greater than 5×1017 cm−3; donor impurities that are in a concentration less than 1×1019 cm−3 and greater than the concentration of the acceptor impurities. The present invention discloses a semiconductor device, comprising: a SiC fluorescent layer having acceptor impurities that are in a concentration greater than 5×1017 cm−3 and donor impurities that are in a concentration less than 1×1019 cm−3 and greater than the concentration of the acceptor impurities; and a light emission layer that is layered on the SiC fluorescent layer and emits excitation light for the SiC fluorescent layer.
摘要翻译:本发明公开了一种SiC晶体,其包括:浓度大于5×10 17 cm -3的受主杂质; 供体杂质浓度小于1×10 9 -3 -3,且大于受体杂质的浓度。 本发明公开了一种半导体器件,包括:具有浓度大于5×10 17 cm -3的受主杂质的SiC荧光层和位于 浓度小于1×10 9 cm -3以上且大于受主杂质的浓度; 以及层叠在SiC荧光层上并发射用于SiC荧光层的激发光的发光层。
摘要:
The present invention discloses a method for fabricating a semiconductor device, comprising: providing a translucent portion; forming a covering layer comprised of one or more metals on the translucent portion by vapor deposition; providing kinetic energy to the covering layer for forming a periodic mask; forming a periodic structure on the translucent portion by using the periodic mask.
摘要:
An epitaxial substrate for manufacturing field effect transistor (FET) that has heterojunction structure consisting of at least a channel layer made of gallium nitride or gallium indium nitride and a barrier layer made of aluminum gallium nitride formed successively on the principal plane of the sapphire substrate, wherein the principal plane of the sapphire substrate semiconductor is inclined from (01-12) plane toward (0001) plane by an off-angle α that is in a range of 0°
摘要:
A semiconductor light emitting element includes a semiconductor stack part that includes a light emitting layer, a diffractive face that light emitted from the light emitting layer is incident to, convex portions or concave portions formed in a period which is longer than an optical wavelength of the light and is shorter than a coherent length of the light, wherein the diffractive face reflects incident light in multimode according to Bragg's condition of diffraction and transmits the incident light in multimode according to the Bragg's condition of diffraction, and a reflective face which reflects multimode light diffracted at the diffractive face and let the multimode light be incident to the diffractive face again. The semiconductor stack part is formed on the diffractive face.
摘要:
[PROBLEM] A light extraction efficiency increases by suppressing a reflection of a semiconductor layer and a transparent substrate.[MEANS FOR SOLVING] A semiconductor light emitting element comprising a semiconductor stack part including a light emitting layer is formed on a main surface of a substrate, a diffractive face that light emitted from the light emitting layer is incident to, that convex portions or concave portions are formed in a period which is longer than optical wavelength of the light and is shorter than coherent length of the light, is formed on a main surface side of the substrate, and a reflective face which reflects light diffracted at the diffractive face and let this light be incident to the diffractive face again is formed on a back surface side of the substrate.
摘要:
The present invention discloses a two-light flux interference exposure device comprising: a laser light source provided in a laser resonator; a single harmonic generation device provided in the laser resonator for converting laser light output by the laser light source to higher harmonics; an etalon provided in the laser resonator so as to serve as a narrowband wavelength filter; a beam splitter dividing laser light output outside the laser resonator into two light fluxes; and an interference optic system causing the light fluxes to interfere with each other on a target to be exposed.
摘要:
The present invention discloses a method for fabricating a semiconductor device, comprising: providing a translucent portion; forming a covering layer comprised of one or more metals on the translucent portion by vapor deposition; providing kinetic energy to the covering layer for forming a periodic mask; forming a periodic structure on the translucent portion by using the periodic mask.
摘要:
The present invention discloses a SiC crystal, comprising: acceptor impurities that are in a concentration greater than 5×1017 cm−3; donor impurities that are in a concentration less than 1×1019 cm−3 and greater than the concentration of the acceptor impurities. The present invention discloses a semiconductor device, comprising: a SiC fluorescent layer having acceptor impurities that are in a concentration greater than 5×1017 cm−3 and donor impurities that are in a concentration less than 1×1019 cm−3 and greater than the concentration of the acceptor impurities; and a light emission layer that is layered on the SiC fluorescent layer and emits excitation light for the SiC fluorescent layer.
摘要翻译:本发明公开了一种SiC晶体,其包含:浓度大于5×1017cm-3的受主杂质; 供体杂质浓度小于1×1019 cm-3,大于受主杂质的浓度。 本发明公开了一种半导体器件,包括:具有浓度大于5×1017cm-3的受主杂质的SiC荧光层和浓度小于1×1019 cm -3并且大于 受体杂质浓度; 以及层叠在SiC荧光层上并发射用于SiC荧光层的激发光的发光层。
摘要:
The present invention discloses a semiconductor, includes one or more luminescent layers; and one or more electron gas layers with two-dimensional electron gases that are distributed parallel to the luminescent layers.
摘要:
A light emitting diode is provided which can obtain emission at the shorter wavelength side of the emission range of normal 6H-type SiC doped with B and N. A porous layer 124 consisting of single crystal 6H-type SiC of porous state is formed on a SiC substrate 102 of a light emitting diode element 100. Visible light is created from blue color to green color when the porous layer 124 is excited by ultra violet light emitted from the nitride semiconductor layer.