摘要:
This invention provides a DMOS transistor that has a reduced ON resistance and is prevented from deterioration in strength against an electrostatic discharge. An edge portion of a source layer of the DMOS transistor is disposed so as to recede from an inner corner portion of a gate electrode. A silicide layer is structured so as not to extend out of the edge portion of the source layer. That is, although the silicide layer is formed on a surface of the source layer, the silicide layer is not formed on a surface of a portion of a body layer, which is exposed between the source layer and the inner corner portion of the gate electrode. As a result, the strength against the electrostatic discharge can be improved, because an electric current flows almost uniformly through whole of the DMOS transistor without converging.
摘要:
This invention provides a DMOS transistor that has a reduced ON resistance and is prevented from deterioration in strength against an electrostatic discharge. An edge portion of a source layer of the DMOS transistor is disposed so as to recede from an inner corner portion of a gate electrode. A silicide layer is structured so as not to extend out of the edge portion of the source layer. That is, although the silicide layer is formed on a surface of the source layer, the silicide layer is not formed on a surface of a portion of a body layer, which is exposed between the source layer and the inner corner portion of the gate electrode. As a result, the strength against the electrostatic discharge can be improved, because an electric current flows almost uniformly through whole of the DMOS transistor without converging.
摘要:
A semiconductor device includes a trench formed in a surface of a semiconductor substrate. A conductor is embedded in the trench. A conductive layer is arranged adjacent to the trench on the surface of the semiconductor substrate. Semiconductor elements, which include sources provided by one of the conductor and the conductive layer and drains provided by the other one of the conductor and the conductive layer, are formed in a semiconductor element formation region. A planar wiring layer is embedded in the semiconductor substrate under the entire semiconductor element formation region and connected to the conductor.
摘要:
The invention provides a DMOS transistor in which a leakage current is decreased and the source-drain breakdown voltage of the transistor in the off state is enhanced when a body layer is formed by oblique ion implantation. After a photoresist layer 18 is formed, using the photoresist layer 18 and a gate electrode 14 as a mask, first ion implantation is performed toward a first corner portion 14C1 on the inside of the gate electrode 14 in a first direction shown by an arrow A′. A first body layer 17A′ is formed by this first ion implantation. The first body layer 17A′ is formed so as to extend from the first corner portion 14C1 to under the gate electrode 14, and the P-type impurity concentration of the body layer 17A′ in the first corner portion 14C1 is higher than that of a conventional transistor.
摘要:
The invention provides a DMOS transistor in which a leakage current is decreased and the source-drain breakdown voltage of the transistor in the off state is enhanced when a body layer is formed by oblique ion implantation. After a photoresist layer 18 is formed, using the photoresist layer 18 and a gate electrode 14 as a mask, first ion implantation is performed toward a first corner portion 14C1 on the inside of the gate electrode 14 in a first direction shown by an arrow A′. A first body layer 17A′ is formed by this first ion implantation. The first body layer 17A′ is formed so as to extend from the first corner portion 14C1 to under the gate electrode 14, and the P-type impurity concentration of the body layer 17A′ in the first corner portion 14C1 is higher than that of a conventional transistor.
摘要:
A semiconductor device includes a trench formed in a surface of a semiconductor substrate. A conductor is embedded in the trench. A conductive layer is arranged adjacent to the trench on the surface of the semiconductor substrate. Semiconductor elements, which include sources provided by one of the conductor and the conductive layer and drains provided by the other one of the conductor and the conductive layer, are formed in a semiconductor element formation region. A planar wiring layer is embedded in the semiconductor substrate under the entire semiconductor element formation region and connected to the conductor.
摘要:
A semiconductor device includes a gate electrode formed through an insulating film in a groove having a first side surface adjacent to a source region and a base region, and a second conductive type first impurity region formed adjacent to a second side surface of the groove between the groove and a lead-out portion of a drain region existing below the base region so as to extend downward beyond a lower end of the groove.
摘要:
An ON resistance of a trench gate type transistor and a withstand voltage of a planar type transistor are optimized at the same time. Each of first and second regions of a semiconductor layer is formed by epitaxial growth on each of first and second regions of a semiconductor substrate, respectively. A first buried layer is formed between the first region of the semiconductor substrate and the first region of the semiconductor layer, while a second buried layer is formed between the second region of the semiconductor substrate and the second region of the semiconductor layer. The first buried layer is formed of an N+ type first impurity-doped layer and an N type second impurity-doped layer that extends beyond the fist impurity-doped layer. The second buried layer is formed of an N+ type impurity-doped layer only. In the first region of the semiconductor layer, an impurity is diffused from a surface of the semiconductor layer deep into the semiconductor layer to form an N type third impurity-doped layer. The trench gate type transistor is formed in the first region of the semiconductor layer and the planar type transistor is formed in the second region of the semiconductor layer.
摘要:
An ESD protection element is formed by a PN junction diode including an N+ type buried layer having a proper impurity concentration and a first P+ type buried layer and a parasitic PNP bipolar transistor which uses a second P+ type buried layer connected to a P+ type diffusion layer as the emitter, an N− type epitaxial layer as the base, and the first P+ type buried layer as the collector. The first P+ type buried layer is connected to an anode electrode, and the P+ type diffusion layer and an N+ type diffusion layer surrounding the P+ type diffusion layer are connected to a cathode electrode. When a large positive static electricity is applied to the cathode electrode, and the parasitic PNP bipolar transistor turns on to flow a large discharge current.
摘要:
A PN junction diode is formed by an N+ type buried layer having a proper impurity concentration and a P+ type buried layer. The P+ type buried layer is combined with a P+ type drawing layer to penetrate an N− type epitaxial layer and be connected to an anode electrode. An N+ type diffusion layer and a P+ type diffusion layer connected to and surrounding the N+ type diffusion layer are formed in the N− type epitaxial layer surrounded by the P+ type buried layer etc. The N+ type diffusion layer and the P+ type diffusion layer are connected to a cathode electrode. An ESD protection element is formed by the PN junction diode and a parasitic PNP bipolar transistor which uses the P+ type diffusion layer as the emitter, the N− type epitaxial layer as the base, and the P+ type drawing layer etc as the collector.