Abstract:
A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
Abstract:
Methods for depositing a metal into a micro-recessed structure in the surface of a microelectronic workpiece are disclosed. The methods are suitable for use in connection with additive free as well as additive containing electroplating solutions. In accordance with one embodiment, the method includes making contact between the surface of the microelectronic workpiece and an electroplating solution in an electroplating cell that includes a cathode formed by the surface of the microelectronic workpiece and an anode disposed in electrical contact with the electroplating solution. Next, an initial film of the metal is deposited into the micro-recessed structure using at least a first electroplating waveform having a first current density. The first current density of the first electroplating waveform is provided to enhance the deposition of the metal at a bottom of the micro-recessed structure. After this initial plating, deposition of the metal is continued using at least a second electroplating waveform having a second current density. The second current density of the second electroplating waveform is provided to assist in reducing the time required to substantially complete filling of the micro-recessed structure.
Abstract:
The present invention is directed to methods and compositions for depositing a noble metal alloy onto a microelectronic workpiece. In one particular aspect of the invention, a platinum metal alloy is electrochemically deposited on a surface of the workpiece from an acidic plating composition. The plated compositions when combined with high-k dielectric material are useful in capacitor structures.
Abstract:
A method for filling recessed micro-structures at a surface of a semiconductor wafer with metallization is set forth. In accordance with the method, a metal layer is deposited into the micro-structures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed micro-structures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties.
Abstract:
The present invention is directed to an improved electroplating method, chemistry, and apparatus for selectively depositing tin/lead solder bumps and other structures at a high deposition rate pursuant to manufacturing a microelectronic device from a workpiece, such as a semiconductor wafer. An apparatus for plating solder on a microelectronic workpiece in accordance with one aspect of the present invention comprises a reactor chamber containing an electroplating solution having free ions of tin and lead for plating onto the workpiece. A chemical delivery system is used to deliver the electroplating solution to the reactor chamber at a high flow rate. A workpiece support is used that includes a contact assembly for providing electroplating power to a surface at a side of the workpiece that is to be plated. The contact contacts the workpiece at a large plurality of discrete contact points that isolated from exposure to the electroplating solution. An anode, preferably a consumable anode, is spaced from the workpiece support within the reaction chamber and is in contact with the electroplating solution. In accordance with one embodiment the electroplating solution comprises a concentration of a lead compound, a concentration of a tin compound, water and methane sulfonic acid.
Abstract:
An automated chemical management system for managing the chemical content of an electrochemical bath used to deposit a material on the surface of a microelectronic workpiece is set forth. The automated chemical management system includes a dosing system that is adapted to dose an amount of one or more chemicals to replenish a given electrochemical bath constituent in accordance with a predetermined dosing equation. The chemical management system also includes an analytical measurement system that is adapted to provide a measurement result indicative of the amount of the given constituent in the electrochemical bath at predetermined time intervals. The chemical management system uses the measurement results to modify the dosing equation of the dosing system. In this manner, the replenishment operations executed by the chemical management system are effectively refined over time thereby providing more accurate control of the amount of the target constituent in the electrochemical bath.