Abstract:
A light emitting module including a substrate, a first light emitting part disposed on the substrate, and a second light emitting part disposed on the substrate and spaced apart from the first light emitting part by an isolation trench between the first and the second light emitting parts, in which the first light emitting part and the second light emitting part include a first light emitting region and a second light emitting region, respectively, the second light emitting region being spaced apart from the first light emitting region, each of the first and second light emitting parts further includes a wavelength conversion layer covering the first and second light emitting regions, the wavelength conversion layers further include a barrier layer, and the isolation trench and the barrier layer vertically overlap each other on the base substrate.
Abstract:
A light emitting module including a base substrate, a first light emitting diode disposed on the base substrate, and a second light emitting diode disposed on the base substrate and spaced apart from the first light emitting diode, in which each of the first light emitting diode and the second light emitting diode includes a first light emitting region and a second light emitting region, the second light emitting region being spaced apart from the first light emitting region and surrounding the first light emitting region.
Abstract:
An exemplary embodiment of the present invention discloses a light-emitting diode (LED) chip including a semiconductor stacked structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, a first electrode disposed on the semiconductor stacked structure, a wavelength converting layer disposed on the semiconductor stacked structure, and a transparent resin disposed on the wavelength converting layer.
Abstract:
A light emitting module including a substrate, a first light emitting part disposed on the substrate, and a second light emitting part disposed on the substrate and spaced apart from the first light emitting part by an isolation trench between the first and the second light emitting parts, in which the first light emitting part and the second light emitting part include a first light emitting region and a second light emitting region, respectively, the second light emitting region being spaced apart from the first light emitting region, each of the first and second light emitting parts further includes a wavelength conversion layer covering the first and second light emitting regions, the wavelength conversion layers further include a barrier layer, and the isolation trench and the barrier layer vertically overlap each other on the base substrate.
Abstract:
A light emitting module includes a light emitting diode chip and a lens. The lens includes a lower surface having a concave portion. The lens also includes an upper surface from which light incident on the concave portion is emitted. The upper surface of the lens includes a concave surface positioned in a central axis thereof. The concave portion of the lower surface includes at least one of a surface perpendicular to the central axis and a downwardly convex surface. At least one of the surface perpendicular to the central axis and the downwardly convex surface is positioned in a region narrower than an entrance region of the concave portion.
Abstract:
A light-emitting diode (LED) includes a substrate, a semiconductor stacked structure disposed on the substrate, the semiconductor stacked structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, a wavelength converting layer configured to convert a wavelength of light emitted from the semiconductor stacked structure, the wavelength converting layer covering side surfaces of the substrate and the semiconductor stacked structure, and a distributed Bragg reflector (DBR) configured to reflect at least a portion of light wavelength-converted by the wavelength converting layer, in which at least a portion of the DBR is covered with a metal layer configured to reflect light transmitted through the DBR.
Abstract:
A light-emitting diode (LED) includes a substrate, a semiconductor stacked structure disposed on the substrate, the semiconductor stacked structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, a wavelength converting layer configured to convert a wavelength of light emitted from the semiconductor stacked structure, the wavelength converting layer covering side surfaces of the substrate and the semiconductor stacked structure, and a distributed Bragg reflector (DBR) configured to reflect at least a portion of light wavelength-converted by the wavelength converting layer, in which at least a portion of the DBR is covered with a metal layer configured to reflect light transmitted through the DBR.
Abstract:
A light-emitting diode (LED) includes a substrate, a semiconductor stacked structure disposed on the substrate, the semiconductor stacked structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, a wavelength converting layer configured to convert a wavelength of light emitted from the semiconductor stacked structure, the wavelength converting layer covering side surfaces of the substrate and the semiconductor stacked structure, and a distributed Bragg reflector (DBR) configured to reflect at least a portion of light wavelength-converted by the wavelength converting layer, in which at least a portion of the DBR is covered with a metal layer configured to reflect light transmitted through the DBR.
Abstract:
A light emitting diode including a first light emitting region, and a second light emitting region spaced apart from and surrounding the first light emitting region, in which the first light emitting region and the second light emitting region are configured to be independently operated.
Abstract:
A light emitting diode (LED) package includes an LED chip, a first lead frame and a second lead frame electrically connected to the LED chip and separated by a space, and a housing disposed on the first lead frame and the second lead frame. The housing includes an external housing surrounding a cavity, the cavity exposing a first portion of the first lead frame and a first portion of the second lead frame, and an internal housing disposed in the space, the internal housing covering a top portion of the first lead frame and a top portion of the second lead frame.