Abstract:
An improved semiconductor memory structure and methods for its fabrication are disclosed. The memory structure includes a semiconductor substrate having a dielectric region formed over a channel region. A doped region is formed between a top portion and a bottom portion of the dielectric region. This doped region includes a suitable electron affinity material. A gate electrode is connected with the top of the dielectric region. In some embodiments, suitable electron affinity materials are introduced into the doped region using implantation techniques. In another embodiment, the electron affinity material is introduced into the doped region using plasma treatment of the dielectric region and the redeposition of additional dielectric material on top of the dielectric region and doped region.
Abstract:
The invention provides a process for forming a low k fluorine and carbon-containing silicon oxide dielectric material by reacting with an oxidizing agent one or more silanes containing one or more organofluoro silanes having the formula SiR1R2R3R4, where: (a) R1 is selected from H, a 3 to 10 carbon alkyl, and an alkoxy; (b) R2 contains at least one C atom bonded to at least one F atom, and no aliphatic C—H bonds; and (c) R3 and R4 are selected from H, alkyl, alkoxy, a moiety containing at least one C atom bonded to at least one F atom, and ((L)Si(R5)(R6))n(R7); where n ranges from 1 to 10; L is O or CFR8; each n R5 and R6 is selected from H, alkyl, alkoxy, and a moiety containing at least one C atom bonded to at least one F atom; R7 is selected from H, alkyl, alkoxy, and a moiety containing at least one C atom bonded to at least one F atom; and each R8 is selected from H, alkyl, alkoxy, and a moiety containing at least one C atom bonded to at least one F atom. Also provided is a low dielectric constant fluorine and carbon-doped silicon oxide dielectric material for use in an integrated circuit structure which contains: silicon atoms bonded to oxygen atoms; silicon atoms bonded to carbon atoms; and carbon atoms bonded to fluorine atoms; where the dielectric material also has a characteristic selected from: (a) the presence of at least one C—C bond; (b) the presence of at least one carbon atom bonded to from 1 to 2 fluorine atoms; and (c) the presence of at least one silicon atom bonded to from 0 to 2 oxygen atoms.
Abstract:
Embodiments of the invention include a capping layer of alloy material formed over a copper-containing layer, the alloy configured to prevent diffusion of copper through the capping layer. In another embodiment the alloy capping layer is self-aligned to the underlying conducting layer. Specific embodiments include capping layers formed of alloys of copper with materials including but not limited to calcium, strontium, barium, and other alkaline earth metals, as well as materials from other groups, for example, cadmium or selenium. The invention also includes methods for forming an alloy capping layer on a copper-containing conducting structure. One such method includes providing a substrate having formed thereon electrically conducting layer comprised of a copper-containing material and forming an alloy capping layer on the electrically conducting layer. In another method embodiment, forming the alloy capping layer includes forming a self-aligned capping layer over the conducting layer. In another method embodiment for forming a capping layer on a copper-containing conducting structure, a substrate having formed thereon electrically conducting layer comprised of a copper-containing material is provided. A layer of reactive material is then formed on the surface of the substrate. This is followed by reacting a portion of the layer of reactive material with the copper-containing material of the conducting layer to form an alloy material on the conducting layer. Unalloyed reactive material is removed from the substrate by heating the substrate to a temperature where the unalloyed reactive material desorbs from the surface of the substrate but where the alloy material remains in place on the substrate surface thereby forming a self-aligned capping layer. In another embodiment, the process is repeated iteratively until a capping layer having the desired thickness is formed.
Abstract:
A barrier layer for a semiconductor device is provided. The semiconductor device comprises a dielectric layer, an electrically conductive copper containing layer, and a barrier layer separating the dielectric layer from the copper containing layer. The barrier layer comprises a silicon oxide layer and a dopant, where the dopant is a divalent ion, which dopes the silicon oxide layer adjacent to the copper containing layer. A method of forming a barrier layer is provided. A silicon oxide layer with a surface is provided. The surface of the silicon oxide layer is doped with a divalent ion to form a barrier layer extending to the surface of the silicon oxide layer. An electrically conductive copper containing layer is formed on the surface of the barrier layer, where the barrier layer prevents diffusion of copper into the substrate.
Abstract:
The invention provides a process for forming a low k fluorine and carbon-containing silicon oxide dielectric material by reacting with an oxidizing agent one or more silanes containing one or more organofluoro silanes having the formula SiR1R2R3R4, where: (a) R1 is selected from H, a 3 to 10 carbon alkyl, and an alkoxy; (b) R2 contains at least one C atom bonded to at least one F atom, and no aliphatic C—H bonds; and (c) R3 and R4 are selected from H, alkyl, alkoxy, a moiety containing at least one C atom bonded to at least one F atom, and ((L)Si(R5)(R6))n(R7); where n ranges from 1 to 10; L is O or CFR8; each n R5 and R6 is selected from H, alkyl, alkoxy, and a moiety containing at least one C atom bonded to at least one F atom; R7 is selected from H, alkyl, alkoxy, and a moiety containing at least one C atom bonded to at least one F atom; and each R8 is selected from H, alkyl, alkoxy, and a moiety containing at least one C atom bonded to at least one F atom. Also provided is a low dielectric constant fluorine and carbon-doped silicon oxide dielectric material for use in an integrated circuit structure which contains: silicon atoms bonded to oxygen atoms; silicon atoms bonded to carbon atoms; and carbon atoms bonded to fluorine atoms; where the dielectric material also has a characteristic selected from: (a) the presence of at least one C—C bond; (b) the presence of at least one carbon atom bonded to from 1 to 2 fluorine atoms; and (c) the presence of at least one silicon atom bonded to from 0 to 2 oxygen atoms.
Abstract:
A process is provided for forming a low k fluorine and carbon-containing silicon oxide dielectric material by reacting with an oxidizing agent one or more silanes including one or more organofluoro silanes characterized by the absence of aliphatic C—H bonds. In one embodiment, the process is carried out using a mild oxidizing agent. Also provided is a low dielectric constant fluorine and carbon-containing silicon oxide dielectric material for use in an integrated circuit structure containing silicon atoms bonded to oxygen atoms, silicon atoms bonded to carbon atoms, and carbon atoms bonded to fluorine atoms, where the dielectric material is characterized by the absence of aliphatic C—H bonds and where the dielectric material has a ratio of carbon atoms to silicon atoms of C:Si greater than about 1:3.
Abstract:
A method of forming a layer over a substrate is provided. Generally, a layer of a first reactive species is deposited over the substrate. The layer of the first reactive species is reacted with a second reactive species to create a first product. Unreacted reactive species is preferentially desorbed leaving a layer of the first product.
Abstract:
An improved semiconductor memory structure and methods for its fabrication are disclosed. The memory structure includes a semiconductor substrate having a dielectric stack formed over a channel region of a semiconductor substrate. The dielectric stack includes a layer of electron trapping material that operates as a charge storage center for memory devices. A gate electrode is connected with the top of the dielectric stack. In various embodiments the electron trapping material forms a greater or lesser portion of the dielectric stack. The invention includes a method embodiment for forming such a memory device.