Abstract:
A conductor layer having a predetermined pattern is formed on a base insulating layer so that its second main surface opposes the base insulating layer. A barrier layer having higher corrosion resistance to acids than that of the conductor layer is formed on its first main surface and a side surface of the conductor layer while the first main surface and the side surface of the conductor layer and the barrier layer are covered with a conductive cover layer.
Abstract:
A conductor layer is formed on one surface of a base insulating layer. The conductor layer is composed of a pair of rectangular collector portions and drawn-out conductor portions extending in long-sized shapes from the collector portions, respectively. Cover layers are formed on the base insulating layer to cover respective given portions of the conductor layer. A paste composition containing a compound represented by the formula (1) is used as a material for the cover layer.
Abstract:
A conductor layer is formed on one surface of a base insulating layer. The conductor layer includes a collector portion, and a drawn-out conductor portion extending in an elongated shape from the collector portion. A cover layer is formed on the base insulating layer to cover a predetermined portion of the conductor layer. A material for the cover layer includes a paste composition containing a compound expressed by the formula (1).
Abstract:
A base insulating layer in an FPC board is used as a fuel supply amount adjustment film for a fuel cell. The base insulating layer in the FPC board has a plurality of anisotropic through pores. The anisotropic through pores respectively has openings on one surface and the other surface of the base insulating layer. The respective openings on the one surface and the other surface of the base insulating layer communicate with each other without diverging by a single communication path. The communication path has a shape that can specify a long axis and a short axis perpendicular to the long axis. The long axis extends in a direction intersecting the one surface and the other surface of the base insulating layer at a predetermined angle.
Abstract:
An FPC board, electrode films and a fuel accommodating chamber are accommodated in a casing. In the FPC board, a plurality of collector portions are joined onto a base insulating layer with an adhesive pattern sandwiched therebetween. The base insulating layer is made of porous ePTFE, and is air-permeable. Openings are formed in the collector portions. The adhesive pattern has the same shape as the plurality of collector portions. The FPC board is sandwiched by an upper surface portion and a lower surface portion of the casing while being bent along a bend portion. The electrode films are arranged between the plurality of collector portions of the FPC board. The fuel accommodating chamber is provided between the FPC board and the lower surface portion so as to come in contact with the base insulating layer. A liquid fuel is supplied to the fuel accommodating chamber.
Abstract:
A pressure-sensitive adhesive optical film of the present invention comprises: an optical film comprising a transparent base film and a discotic liquid crystal layer on one side of the transparent base film; and a pressure-sensitive adhesive layer that is provided on the discotic liquid crystal layer, wherein the pressure-sensitive adhesive layer is made from a pressure-sensitive adhesive containing an acrylic polymer comprising an alkyl(meth)acrylate (a1) and a ring structure-containing (meth)acrylate (a2) as monomer units and having a weight average molecular weight of 1,000,000 to 3,000,000, and a crosslinking agent. The pressure-sensitive adhesive optical film has durability and can be prevented from causing display unevenness in a peripheral portion of a display screen.
Abstract:
A pressure-sensitive adhesive for an optical film of the present invention comprises a (meth)acrylic polymer comprising 50 to 99.99% by weight of alkyl (meth)acrylate monomer unit and 0.01 to 30% by weight of a photocrosslinkable monomer unit having an unsaturated double bond-containing polymerizable functional group and a photocrosslinkable moiety different from the functional group. A pressure-sensitive adhesive layer is formed from the pressure-sensitive adhesive on at least one side of an optical film, wherein the photocrosslinkable moiety of the (meth)acrylic polymer in the pressure-sensitive adhesive is crosslinked by active energy ray irradiation. The pressure-sensitive adhesive can form the pressure-sensitive adhesive layer with a high level of durability and preferable workability.
Abstract:
A radiation detector module includes a radiation detecting substrate including a plurality of semiconductor devices mounted thereon for detecting radiation, a shielding material at a position nearer to an incident side of the radiation than the radiation detecting substrate, the shielding material being capable of shielding a portion of the radiation, and a fixing member including a bottom, a first side wall extending in a normal direction to the bottom from one end of the bottom, and a second side wall extending in the normal direction to the bottom from an other end of the bottom. The first side wall and the second side wall each include a substrate supporting portion for supporting the radiation detecting substrate, and a shielding material supporting portion at a predetermined position relative to the substrate supporting portion for supporting the shielding material.
Abstract:
A plurality of conductor traces are formed on a porous base insulating layer made of porous ePTFE. Each conductor trace has a laminated structure of a seed layer and a conductor layer. A cover insulating layer is formed on the base insulating layer to cover each conductor trace. The ePTFE used as the porous base insulating layer has continuous pores. An average pore size of the ePTFE is not less than 0.05 μm and not more than 1.0 μm.
Abstract:
A printed circuit board includes a base insulating layer formed of a porous film. Conductor traces are formed on the base insulating layer formed of the porous film. A cover insulating layer is formed on the base insulating layer to cover the conductor traces. The porous film used as the base insulating layer has a reflectivity of not less than 50% for light of at least a part of wavelengths in a wavelength region from 400 nm to 800 nm.