摘要:
A mutant capable of producing 1,4-butanediol and a method of preparing 1,4-butanediol using the same are provided. The mutant microorganism is prepared by introducing and amplifying genes encoding enzymes converting succinate into 4-hydroxybutyrate and 4-hydroxybutyrate into 1,4-butanediol in a microorganism capable of producing succinate. The method includes culturing the mutant in a medium containing carbohydrate and obtaining 1,4-butanediol from the culture. Thus, 1,4-butanediol, which is essential in chemical industry, can be prepared in a biological process.
摘要:
The present invention relates to a method for producing middle-chain-length polyhydroxyalkanoate (MCL-PHA) using a maoC gene. The producing method of MCL-PHA according to the present invention comprises the steps of transforming a microorganism with the maoC gene to give a transformant, the microorganism being deleted of a fadB gene and containing a PHA synthase gene; culturing the transformant in medium containing a C6-10 carbon source; and obtaining PHA consisting of monomers with 6–10 carbon atoms. When the maoC gene whose function has not yet been established is used according to the present invention, high quality PHA with a higher number of carbon atoms than the prior PHA can be produced at a higher efficiency.
摘要:
Provided is a method of preparing polylactate (PLA) or a copolymer thereof using a mutant microorganism in which a gene participating in a coenzyme A (CoA) donor- and lactate-producing pathway is genetically manipulated to increase the productivity of a CoA donor and lactate. Amounts of the CoA donor and the lactate are simultaneously increased in a microbial metabolic pathway to enable effective biosynthesis of PLA and a hydroxyalkanoate-lactate copolymer having a high content of lactate, which is industrially useful.
摘要:
There is provided a recombinant microorganism having producibility of poly(lactate-co-glycolate) from glucose, and more particularly, a recombinant microorganism having producibility of poly(lactate-co-glycolate) without adding an exogenous glycolate precursor, and a method of preparing [poly(preparing lactate-co-glycolate)] using the same. According to the present invention, the poly(lactate-co-glycolate) in which the concentration of the glycolate fraction is high may be prepared at a high concentration without supplying exogenous glyoxylate. Therefore, the present invention may be effectively used for treatment.
摘要:
There is provided a recombinant microorganism having producibility of poly(lactate-co-glycolate) from glucose, and more particularly, a recombinant microorganism having producibility of poly(lactate-co-glycolate) without adding an exogenous glycolate precursor, and a method of preparing [poly(preparing lactate-co-glycolate)] using the same. According to the present invention, the poly(lactate-co-glycolate) in which the concentration of the glycolate fraction is high may be prepared at a high concentration without supplying exogenous glyoxylate. Therefore, the present invention may be effectively used for treatment.
摘要:
The present invention relates to an expression vector which can effectively express target proteins or peptides on the surface of cells using an outer membrane protein (FadL) of E. coli as a surface anchoring motif. Also, the present invention relates to microorganisms transformed with the expression vector, and a method for stably expressing large amounts of target proteins on the surface of cells by culturing the transformed microorganisms. Furthermore, the present invention relates to a production method of protein arrays, a production method of antibodies, and a bioconversion method, the methods being characterized by using target proteins which have been expressed on the cell surface by the inventive method. In addition, the present invention relates to a method for improving target proteins by the inventive surface expression method. The present invention allows target proteins with normal functions to be expressed on an outer cell membrane. Thus, the present invention will be useful in recombinant live vaccines, the screening of various peptides or antibodies, whole-cell adsorbents for heavy metal removal or waste water treatment, whole-cell bioconversion, and the like.
摘要:
Provided is a method of preparing polylactate (PLA) or a copolymer thereof using a mutant microorganism in which a gene participating in a coenzyme A (CoA) donor- and lactate-producing pathway is genetically manipulated to increase the productivity of a CoA donor and lactate. Amounts of the CoA donor and the lactate are simultaneously increased in a microbial metabolic pathway to enable effective biosynthesis of PLA and a hydroxyalkanoate-lactate copolymer having a high content of lactate, which is industrially useful.
摘要:
A method for producing target proteins by deleting or amplifying ibpA and/or ibpB genes coding for inclusion body-associated proteins. Two methods for producing target proteins using ibpA and/or ibpB genes coding for inclusion body-associated proteins of E. coli are described. The first method enhances the secretory production and activity of target proteins using ibpA and/or ibpB genes-deleted bacteria. The second method enhances the production of target proteins in the cytoplasm and also converts the target proteins from soluble form to insoluble inclusion body, using ibpA and/or ibpB gene-amplified bacteria.
摘要:
The present invention relates to a composition containing sHSPs for prevention of protein degradation and a composition for two-dimensional (2-D) gel electrophoresis. Furthermore, the present invention relates to the improved method of 2-D gel electrophoresis, which is characterized by using sHSPs. According to the present invention, decreasing of protein spots was prevented in the 2-D gel electrophoresis, thereby obtaining 2-D gel with much more protein spots.
摘要:
A multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing corneal dystrophy, and more particularly to a multi-spot metal-capped nanostructure array nucleic acid chip capable of employing LSPR (localized surface plasmon resonance) optical properties, a preparation method thereof, and a multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing BIGH3 gene mutations, which can diagnose various corneal dystrophies. The metal-capped nanostructure array nucleic acid chip can be combined with analysis devices, including a light source, a detector, a spectrophotometer and a computer, to provide an LSPR optical property-based optical biosensor, and the use of the multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing BIGH3 gene mutations allows the simultaneous diagnosis of various corneal dystrophies that are genetic ocular diseases.