Abstract:
Multiple embodiments of a low power sense amplifier for use in a flash memory system are disclosed. In some embodiments, the loading on a sense amplifier can be adjusted by selectively attaching one or more bit lines to the sense amplifier, where the one or more bit lines each is coupled to an extraneous memory cell.
Abstract:
The present invention relates to systems and methods for implementing wear leveling in a flash memory device that emulates an EEPROM. The embodiments utilize an index array, which stores an index word for each logical address in the emulated EEPROM. Each bit in each index word is associated with a physical address for a physical word in the emulated EEPROM, and the index word keeps track of which physical word is the current word for a particular logical address. The use of the index word enables a wear leveling algorithm that allows for a programming command to a logical address to result in: (i) skipping the programming operation if the data stored in the current word does not contain a “1” that corresponds to a “0” in the data to be stored, (ii) reprogramming one or more bits of the current word in certain situations, or (iii) shifting to and programming the next physical word in certain situations.
Abstract:
Multiple embodiments of a low power sense amplifier for use in a flash memory system are disclosed. In some embodiments, the loading on a sense amplifier can be adjusted by selectively attaching one or more bit lines to the sense amplifier, where the one or more bit lines each is coupled to an extraneous memory cell.
Abstract:
The disclosed embodiments comprise a flash memory device and a method of programming the device in a way that reduces degradation of the device compared to prior art methods.
Abstract:
A memory device that includes a memory array having pluralities of non-volatile memory cells, a plurality of index memory cells each associated with a different one of the pluralities of the non-volatile memory cells, and a controller. The controller is configured to erase the pluralities of non-volatile memory cells, set each of the index memory cells to a first state, and program first data into the memory array by reading the plurality of index memory cells and determining that a first one of the index memory cells is in the first state, programming the first data into the plurality of the non-volatile memory cells associated with the first one of the index memory cells, and setting the first one of the index memory cells to a second state different from the first state.
Abstract:
An improved low-power sense amplifier for use in a flash memory system is disclosed. The reference bit line and selected bit line are pre-charged during a limited period and with limited power consumed. The pre-charge circuit can be trimmed during a configuration process to further optimize power consumption during the pre-charge operation.
Abstract:
An improved sensing circuit is disclosed that utilizes a bit line in an unused memory array to provide reference values to compare against selected cells in another memory array. A circuit that can perform a self-test for identifying bit lines with leakage currents about an acceptable threshold also is disclosed.
Abstract:
The present embodiments relate to systems and methods for implementing wear leveling in a flash memory device that emulates an EEPROM. The embodiments utilize an index array, which stores an index word for each logical address in the emulated EEPROM. The embodiments comprise a system and method for receiving an erase command and a logical address, the logical address corresponding to a sector of physical words of non-volatile memory cells in an array of non-volatile memory cells, the sector comprising a first physical word, a last physical word, and one or more physical words between the first physical word and the last physical word; when a current word, identified by an index bit, is the last physical word in the sector, erasing the sector; and when the current word is not the last physical word in the sector, changing a next index bit.
Abstract:
The present invention relates to systems and methods for implementing wear leveling in a flash memory device that emulates an EEPROM. The embodiments utilize an index array, which stores an index word for each logical address in the emulated EEPROM. Each bit in each index word is associated with a physical address for a physical word in the emulated EEPROM, and the index word keeps track of which physical word is the current word for a particular logical address. The use of the index word enables a wear leveling algorithm that allows for a programming command to a logical address to result in: (i) skipping the programming operation if the data stored in the current word does not contain a “1” that corresponds to a “0” in the data to be stored, (ii) reprogramming one or more bits of the current word in certain situations, or (iii) shifting to and programming the next physical word in certain situations.
Abstract:
The disclosed embodiments comprise a flash memory device and a method of programming the device in a way that reduces degradation of the device compared to prior art methods.