摘要:
A secondary charged particle detection device for detection of a signal beam is described. The device includes a detector arrangement having at least two detection elements with active detection areas, wherein the active detection areas are separated by a gap (G), a particle optics configured for separating the signal beam into a first portion of the signal beam and into at least one second portion of the signal beam, and configured for focusing the first portion of the signal beam and the at least one second portion of the signal beam. The particle optics includes an aperture plate and at least a first inner aperture openings in the aperture plate, and at least one second radially outer aperture opening in the aperture plate, wherein the first aperture opening has a concave shaped portion, particularly wherein the first aperture opening has a pincushion shape.
摘要:
A secondary charged particle detection device for detection of a signal beam is described. The device includes a detector arrangement having at least two detection elements with active detection areas, wherein the active detection areas are separated by a gap (G), a particle optics configured for separating the signal beam into a first portion of the signal beam and into at least one second portion of the signal beam, and configured for focusing the first portion of the signal beam and the at least one second portion of the signal beam. The particle optics includes an aperture plate and at least a first inner aperture openings in the aperture plate, and at least one second radially outer aperture opening in the aperture plate, wherein the aperture plate is configured to be biased to one potential surrounding the first inner aperture opening and the at least one outer aperture opening.
摘要:
A shielding member for a charged particle beam apparatus includes a conductive substrate; and a through hole extending through the conductive substrate. The conductive substrate is comprised of a material having a specific electrical resistivity in a range from about 106 Ωcm to about 1012 Ωcm.
摘要:
An achromatic beam separator device for separating a primary charged particle beam from another charged particle beam and providing the primary charged particle beam on an optical axis (142) is provided, including a primary charged particle beam inlet (134), a primary charged particle beam outlet (132) encompassing the optical axis, a magnetic deflection element (163) adapted to generate a magnetic field, and an electrostatic deflection element (165) adapted to generate an electric field overlapping the magnetic field, wherein at least one element chosen from the electrostatic deflection element and the magnetic deflection element is positioned and/or positionable to compensate an octopole influence.
摘要:
An emitter assembly for emitting a charged particle beam along an optical axis is described. The emitter assembly being housed in a gun chamber and includes an emitter having an emitter tip, wherein the emitter tip is positioned at a first plane perpendicular to the optical axis and wherein the emitter is configured to be biased to a first potential, an extractor having an opening, wherein the opening is positioned at a second plane perpendicular to the optical axis and wherein the extractor is configured to be biased to a second potential, wherein the second plane has a first distance from the first plane of 2.25 mm and above.
摘要:
A lens system for a plurality of charged particle beams comprises a lens body with a first pole piece, a second pole piece and a plurality of lens openings for the respective charged particle beams; a common excitation coil arranged around the plurality of lens openings for providing a respective first magnetic flux to the lens openings; and a compensation coil arranged between the lens openings for providing a respective second magnetic flux to at least some of the lens openings so as to compensate for an asymmetry of the first magnetic flux.
摘要:
An electron beam device comprises: a beam emitter for emitting a primary electron beam; an objective electron lens for focusing the primary electron beam onto a specimen, the objective lens defining an optical axis; a beam separator having a first dispersion for separating a signal electron beam from the primary electron beam; and a dispersion compensation element. The dispersion compensation element has a second dispersion, the dispersion compensation element being adapted for adjusting the second dispersion independently of an inclination angle of the primary beam downstream of the dispersion compensation element, such that the second dispersion substantially compensates the first dispersion. The dispersion compensation element is arranged upstream, along the primary electron beam, of the beam separator.