摘要:
An isolated polynucleotide encoding a novel potassium channel polypeptide, KCNQ5, that is expressed primarily in brain and skeletal muscle is described. The new polypeptide has been cloned and isolated from a human brain cDNA library and is a member the KCNQ family of potassium channels. The provided human KCNQ5 nucleic acid sequence and encoded polypeptide can be employed for diagnostic, screening and therapeutic uses. Moreover, the hKCNQ5 polypeptide can be used to assay for KCNQ5 potassium channel modulators, which can be utilized in the treatment of neurological, neurophysiological, neuropsychological and neuroaffective diseases, conditions and disorders, including, but not limited to, acute and chronic pain, migraine, acute stroke, dementia, vascular dementia, trauma, epilepsy, amyelotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson's Disease, learning and cognitive disorders, and neurophysiological disorders including anxiety disorders, depression, bipolar disorders, sleep disorders, addiction, and eating disorders.
摘要:
This invention provides a novel isolated polynucleotide sequence, called ADARP1 (adenosine deaminase related protein 1), that displays significant homology to the adenosine deaminase (ADA) gene. Also provided is the amino acid sequence of the ADARP1 polypeptide encoded by the polynucleotide of the invention. The RNA for this novel gene is found in variety of tissues, with higher levels observed in the heart, testes, and skeletal muscle compared with others tested. Based on amino acid sequence homology, the ADARP1 protein will likely display the catalytic activity characteristic of ADA. This newly found ADARP1 gene and its encoded product may be useful in the treatment of immunodeficiencies, including severe combined immunodeficiency disease (SCID) and other ADA deficiencies, treatment of male reproductive disorders, testicular disorders and musclo-skeletal disorders.
摘要:
The present invention provides novel polynucleotides encoding HGPRBMY74 polypeptides, fragments and homologues thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HGPRBMY74 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding HGPRBMY28 and HGPRBMY29 polypeptides, fragments and homologues thereof. The present invention also provides polynucleotides encoding splice variants of HGPRBMY29 polypeptides, HGPRBMY29v1 and HGPRBMY29v2. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HGPRBMY28, HGPRBMY29, HGPRBMY29v1, and HGPRBMY29v2 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding HLRRBM1 polypeptides, fragments and homologues thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HLRRBM1 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides, particularly immune diseases and/or disorders. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding HGPRBMY28 and HGPRBMY29 polypeptides, fragments and homologues thereof. The present invention also provides polynucleotides encoding splice variants of HGPRBMY29 polypeptides, HGPRBMY29v1 and HGPRBMY29v2. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HGPRBMY28, HGPRBMY29, HGPRBMY29v1, and HGPRBMY29v2 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding HLRRSI1 polypeptides, fragments and homologues thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HLRRSI1 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides, particularly gastrointestinal diseases and/or disorders. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding HGPRBMY39 polypeptides, fragments and homologues thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HGPRBMY39 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding HGPRBMY11 polypeptides, fragments and homologues thereof. The present invention also provides polynucleotides encoding variants of the HGPRBMY11 polypeptide, HGPRBMY11v1 and HGPRBMY11v2. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing these polypeptides. The invention further relates to diagnostic and therapeutic methods for applying these novel HGPRBMY11, HGPRBMY11v1, and/or HGPRBMY11v2 polypeptides to the diagnosis, treatment, and/or prevention of various diseases and/or disorders related to these polypeptides, particularly gastrointestinal diseases and/or disorders, Crohn's disease, ovarian cancer, and diseases and disorders related to aberrant NFKB modulation. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention.
摘要:
The present invention provides novel polynucleotides encoding Drosophila DmTNF polypeptides, fragments and homologs thereof. The present invention also is directed to novel polynucleotides encoding two Drosophila DmTNF variants, DmTNFv1 and DmTNFv2 polypeptides, fragments and homologs thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention, in addition to methods of genetically modifying Drosophila or cultured cells to express or mis-express DmTNF, DmTNFv1, or DmTNFv2. The invention also relates to the use of such modified insects or cells to characterize DmTNF activity, identify TNF-like genes and/or genes implicated in modulating TNF, characterize TNF signaling pathways, and/or to identify modulators of DmTNF activity.