摘要:
An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A regulating electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by maintaining the 24-hour anode seal power density below about 1.5 .mu.W/cm.sup.2. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate. The combination of regulating electrodes and offset seals is particularly effective in eliminating anode seal failure.
摘要翻译:用于从含氧气体中分离氧的电化学装置包括多个平面离子导电固体电解质板和组装在多电池堆中的导电气体不可渗透互连。 将导电阳极和阴极材料施加到每个电解质板的相对侧。 在每个电解质板的阳极侧和相邻互连件的阳极侧之间结合气密阳极密封。 施加到阳极密封件和阳极边缘之间的每个电解质板的阳极侧的调节电极通过将24小时的阳极密封功率密度维持在约1.5μW/ cm 2以下来消除阳极密封故障。 在每个电解质板的阴极侧和相邻的互连件之间施加气密密封,使得阳极和阴极密封件在板的相对侧上径向偏移。 调节电极和偏移密封的组合在消除阳极密封故障方面特别有效。
摘要:
Planar solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of planar membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.
摘要:
The present invention is a method for manufacturing inorganic membranes which are capable of separating oxygen from oxygen-containing gaseous mixtures. The membranes comprise a porous composite of a thin layer of a multicomponent metallic oxide which has been deposited onto a porous support wherein the pores of the multicomponent metallic oxide layer are subsequently filled or plugged with a metallic-based species. The inorganic membranes are formed by depositing a porous multicomponent metallic oxide layer onto the porous support to form a porous composite having a network of pores capable of transporting gases. The network of pores are plugged or filled by organometallic vapor infiltration to form an inorganic membrane having essentially no through porosity.
摘要:
An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate. The combination of biasing electrodes and offset seals is particularly effective in eliminating anode seal failure.
摘要:
An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate. The combination of biasing electrodes and offset seals is particularly effective in eliminating anode seal failure.
摘要:
An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate. The combination of biasing electrodes and offset seals is particularly effective in eliminating anode seal failure.
摘要:
A low solids-content slurry for polishing (e.g., chemical mechanical planarization) of substrates comprising a dielectric and an associated method using the slurry are described. The slurry and associated method afford high removal rates of dielectric during polishing even though the slurry has low solids-content. The slurry comprises a bicarbonate salt, which acts as a catalyst for increasing removal rates of dielectric films during polishing of these substrates.
摘要:
A composition and associated method for chemical mechanical planarization (or other polishing) are described which afford high tantalum to copper selectivity in copper CMP and which are tunable (in relation to polishing performance). The composition comprises an abrasive and an N-acyl-N-hydrocarbonoxyalkyl aspartic acid compound and/or a tolyltriazole derivative.
摘要:
A low defectivity colloidal silica-based product slurry for use in chemical mechanical planarization (CMP) and an associated production method are described. The product slurry is produced using centrifugation of and optionally with addition of a surfactant to a starting colloidal silica (which can be a commercially available colloidal silica). The product slurry has substantially lower levels of soluble polymeric silicates than does the starting colloidal silica and affords lower defectivity levels when used in a slurry for CMP processing than does the starting colloidal silica.
摘要:
A chemical mechanical polishing composition contains 1) water, 2) optionally an abrasive material, 3) an oxidizer, preferably a per-type oxidizer, 4) a small amount of soluble metal-ion oxidizer/polishing accelerator, a metal-ion polishing accelerator bound to particles such as to abrasive particles, or both; and 5) at least one of the group selected from a) a small amount of a chelator, b) a small amount of a dihydroxy enolic compound, and c) a small amount of an organic accelerator. Ascorbic acid in an amount less than 800 ppm, preferably between about 100 ppm and 500 ppm, is the preferred dihydroxy enolic compound. The polishing compositions and processes are useful for substantially all metals and metallic compounds found in integrated circuits, but is particularly useful for tungsten. The present invention also pertains to surface-modified colloidal abrasive polishing compositions and associated methods of using these compositions, particularly for chemical mechanical planarization, wherein the slurry comprises low levels of chelating free radical quenchers, non-chelating free radical quenchers, or both.