摘要:
A capacitor having a dielectric layer including a composite oxide, the composite oxide including a transition metal and including a lanthanide group element, a memory device including the same and a method of manufacturing the capacitor are provided. The transition metal may be titanium and the composite oxide may be nitrided. The method may include providing a precursor of a transition metal, providing a precursor of a lanthanide group element, and forming a composite oxide on the lower electrode by oxidizing both the precursor of the transition metal and the precursor of the lanthanide group element, the composite oxide containing the transition metal and the lanthanide group element.
摘要:
In a capacitor of a semiconductor device, a semiconductor memory device including the capacitor, and a method of operating the semiconductor memory device, the capacitor includes a lower electrode, a dielectric layer stacked on the lower electrode, the dielectric layer including a phase-transition layer capable of exhibiting two different resistance characteristics depending on whether an insulating property thereof has been changed, and an upper electrode stacked on the dielectric layer.
摘要:
A capacitor of a semiconductor device, and a method of manufacturing the capacitor of the semiconductor device, include a lower electrode layer, a dielectric layer, and an upper electrode layer, wherein the dielectric layer includes tantalum (Ta) oxide and an oxide of a Group 5 element, such as niobium (Nb) or vanadium (V).
摘要:
An antimony precursor including antimony, nitrogen and silicon, a phase-change memory device using the same, and a method of making the phase-change memory device. The phase-change memory device may have a phase-change film of a Ge2—Sb2—Te5 material including nitrogen and silicon.
摘要:
A capacitor and a method of fabricating the capacitor are provided herein. The capacitor can be formed by forming two or more dielectric layers and a lower electrode, wherein at least one of the two or more dielectric layers is formed before the lower electrode is formed.
摘要:
A data storage and a semiconductor memory device including the same are provided, the data storage including a lower electrode, a first discharge prevention layer stacked on the lower electrode, a phase-transition layer on the first discharge prevention layer, a second discharge prevention layer stacked on the phase-transition layer, and an upper electrode stacked on the second discharge prevention layer. The phase transition layer includes oxygen and exhibits two different resistance characteristics depending on whether an insulating property thereof changed. The first and second discharge prevention layers block discharge of the oxygen from the phase transition layer.
摘要:
An antimony precursor including antimony, nitrogen and silicon, a phase-change memory device using the same, and a method of making the phase-change memory device. The phase-change memory device may have a phase-change film of a Ge2—Sb2—Te5 material including nitrogen and silicon.
摘要:
A capacitor and a method of fabricating the capacitor are provided herein. The capacitor can be formed by forming two or more dielectric layers and a lower electrode, wherein at least one of the two or more dielectric layers is formed before the lower electrode is formed.
摘要:
A Ti-precursor for forming a Ti-containing thin layer represented by the formula I below, a method of preparing the same, a method of preparing a Ti-containing thin layer by employing the Ti-precursor and the Ti-containing thin layer are provided: wherein X1 and X2 are independently F, Cl, Br or I; n is 0, 1, 2, 3, 4 or 5; m is 0, 1, 2, 3, 4, 5, 6 or 7; and R1 and R2 are independently a linear or branched C1-10 alkyl group. The Ti precursor for forming the Ti-containing thin layer can be deposited at a deposition temperature of approximately 150° C.˜200° C., and a Ti-containing thin layer with a high performance character can be prepared.
摘要:
A Ti-precursor for forming a Ti-containing thin layer represented by the formula I below, a method of preparing the same, a method of preparing a Ti-containing thin layer by employing the Ti-precursor and the Ti-containing thin layer are provided: wherein X1 and X2 are independently F, Cl, Br or I; n is 0, 1, 2, 3, 4 or 5; m is 0, 1, 2, 3, 4, 5, 6 or 7; and R1 and R2 are independently a linear or branched C1-10 alkyl group. The Ti precursor for forming the Ti-containing thin layer can be deposited at a deposition temperature of approximately 150° C.˜200° C., and a Ti-containing thin layer with a high performance character can be prepared.