Abstract:
An analog-to-digital converter circuit module utilizing dither to reduce multiplicative noise. A dither generation circuit generates a noise-shaped analog dither signal having lower amplitudes at frequencies below a cutoff frequency than at frequencies above the cutoff frequency. The noise-shaped analog dither signal is added to the input analog signal to be converted and the summed signal applied to an analog-to-digital converter The dither generation circuit may be implemented as an analog dither generator followed by an analog high-pass filter. The dither generation circuit may alternatively be implemented digitally, for example with a digital noise-shaping filter applying a high-pass digital filter to a pseudo-random binary sequence. The digital dither generation circuit may alternatively be implemented by one or more 1-bit sigma-delta modulators, each generating a bit of a digital dither sequence that is converted to analog.
Abstract:
In described examples, an analog to digital converter (ADC), having an input operable to receive an analog signal and an output operable to output a digital representation of the analog signal, includes a voltage to delay (VD) block. The VD block is coupled to the input of the ADC and generates a delay signal responsive to a calibration signal. A backend ADC is coupled to the VD block, and receives the delay signal. The backend ADC having multiple stages including a first stage. A calibration engine is coupled to the multiple stages and the VD block. The calibration engine measures an error count of the first stage and stores a delay value of the first stage for which the error count is minimum.
Abstract:
A circuit includes a nonlinear analog-to-digital converter (ADC) configured to provide a first digital output based on an analog input signal. The circuit also includes a linearization circuit having a lookup table (LUT) memory configured to store initial calibration data. The linearization circuit is coupled to the nonlinear ADC and is configured to: determine updated calibration data based on the initial calibration data; replace the initial calibration data in the LUT memory with the updated calibration data; and provide a second digital output at a linearization circuit output of the linearization circuit based on the first digital output and the updated calibration data.
Abstract:
Disclosed examples include pipeline ADC, balancing circuits and methods to balance a load of a reference circuit to reduce non-linearity and settling effects for a reference voltage signal, in which balancing capacitors are connected to a voltage source in a pipeline stage ADC sample time period to precharge the balancing capacitors using a voltage above the reference voltage, and a selected set of the precharged balancing capacitors is connected to provide charge to the output of the reference circuit during the second time period.
Abstract:
In described examples, an analog to digital converter (ADC), having an input operable to receive an analog signal and an output operable to output a digital representation of the analog signal, includes a voltage to delay (VD) block. The VD block is coupled to the input of the ADC and generates a delay signal responsive to a calibration signal. A backend ADC is coupled to the VD block, and receives the delay signal. The backend ADC having multiple stages including a first stage. A calibration engine is coupled to the multiple stages and the VD block. The calibration engine measures an error count of the first stage and stores a delay value of the first stage for which the error count is minimum.
Abstract:
An analog-to-digital converter circuit module utilizing dither to reduce multiplicative noise. A dither generation circuit generates a noise-shaped analog dither signal having lower amplitudes at frequencies below a cutoff frequency than at frequencies above the cutoff frequency. The noise-shaped analog dither signal is added to the input analog signal to be converted and the summed signal applied to an analog-to-digital converter The dither generation circuit may be implemented as an analog dither generator followed by an analog high-pass filter. The dither generation circuit may alternatively be implemented digitally, for example with a digital noise-shaping filter applying a high-pass digital filter to a pseudo-random binary sequence. The digital dither generation circuit may alternatively be implemented by one or more 1-bit sigma-delta modulators, each generating a bit of a digital dither sequence that is converted to analog.
Abstract:
Disclosed examples include pipeline ADC, balancing circuits and methods to balance a load of a reference circuit to reduce non-linearity and settling effects for a reference voltage signal, in which balancing capacitors are connected to a voltage source in a pipeline stage ADC sample time period to precharge the balancing capacitors using a voltage above the reference voltage, and a selected set of the precharged balancing capacitors is connected to provide charge to the output of the reference circuit during the second time period.