Abstract:
Provided is a method of forming a gate insulating film for use in a MOSFET for a power device. An AlN film is formed on a SiC substrate of a wafer W and then the formation of an AlO film and the formation of an AlN film on the formed AlO film are repeated, thereby forming an AlON film having a laminated structure in which AlO films and AlN films are alternately laminated. A heat treatment is performed on the AlON film having the laminated structure.
Abstract:
A substrate processing apparatus includes a first hole portion formed through a sidewall of the process chamber and horizontally extending outward and a second hole portion formed to be contiguous with the first hole portion and defining a supply channel for a process gas. The apparatus also includes a gas nozzle, a plurality of seal members and an annular spacer. A proximal end of the gas nozzle is inserted into the first hole portion. The plurality of seal members is spaced apart from each other between an outer circumferential surface of the gas nozzle and the first hole portion. The annular spacer is inserted into the first hole portion and is pressed against an annular surface of an opening periphery of the second hole portion by the gas nozzle in a state where the proximal end of the gas nozzle is engaged with the annular spacer.
Abstract:
A method of depositing a film of forming a doped oxide film including a first oxide film containing a first element and doped with a second element on substrates mounted on a turntable including depositing the first oxide film onto the substrates by rotating the turntable predetermined turns while a first reaction gas containing the first element is supplied from a first gas supplying portion, an oxidation gas is supplied from a second gas supplying portion, and a separation gas is supplied from a separation gas supplying portion, and doping the first oxide film with the second element by rotating the turntable predetermined turns while a second reaction gas containing the second element is supplied from one of the first and second gas supplying portions, an inert gas is supplied from another one, and the separation gas is supplied from the separation gas supplying portion.
Abstract:
A method of depositing a film of forming a doped oxide film including a first oxide film containing a first element and doped with a second element on substrates mounted on a turntable including depositing the first oxide film onto the substrates by rotating the turntable predetermined turns while a first reaction gas containing the first element is supplied from a first gas supplying portion, an oxidation gas is supplied from a second gas supplying portion, and a separation gas is supplied from a separation gas supplying portion, and doping the first oxide film with the second element by rotating the turntable predetermined turns while a second reaction gas containing the second element is supplied from one of the first and second gas supplying portions, an inert gas is supplied from another one, and the separation gas is supplied from the separation gas supplying portion.
Abstract:
A film deposition method includes rotating a rotary table by a first angle while supplying a separation gas from a separation gas supplying part and a first reaction gas from a first gas supplying part; supplying a second reaction gas from a second gas supplying part and rotating the rotary table by a second angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; rotating the rotary table by a third angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; and supplying a third reaction gas from the second gas supplying part and rotating the rotary table by a fourth angle while supplying the separation gas and the first reaction gas.
Abstract:
A film deposition method includes rotating a rotary table by a first angle while supplying a separation gas from a separation gas supplying part and a first reaction gas from a first gas supplying part; supplying a second reaction gas from a second gas supplying part and rotating the rotary table by a second angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; rotating the rotary table by a third angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; and supplying a third reaction gas from the second gas supplying part and rotating the rotary table by a fourth angle while supplying the separation gas and the first reaction gas.
Abstract:
A monitoring apparatus for monitoring a raw material tank monitors the temperature of the raw material tank when the temperature of the raw material tank storing a solid or liquid raw material is raised to a set temperature by a heating unit. The monitoring apparatus includes: a temperature determination unit configured to determine whether the temperature has reached a stable range including the set temperature, and determine whether the temperature has deviated from the stable range; and a setting unit configured to set the set temperature of the heating unit to 0° C. when a predetermined timeout time has elapsed from a time point at which the temperature determination unit determined that the temperature deviated from the stable range.
Abstract:
A method of detoxifying an exhaust pipe in a film forming apparatus configured to supply a raw material gas contending a harmful component and a reaction gas capable of generating a harmless reaction product by reaction with the raw material gas into a process chamber to perform a film forming process on a substrate while independently exhausting the raw material gas and the reaction gas from a raw material exhaust pipe and a reaction gas exhaust pipe connected to the process chamber, respectively, is provided. The method includes supplying the reaction gas into the raw material exhaust pipe to detoxify an interior of the raw material exhaust pipe during a predetermined period in which the film forming apparatus is operated and the film forming process is not performed.
Abstract:
A nozzle for supplying a fluid includes a tubular part including a tubular passage thereinside and a fluid discharge surface having a plurality of fluid discharge holes formed therein along a lengthwise direction of the tubular passage. A partition plate is provided in the tubular passage and extends along the lengthwise direction so as to partition the tubular passage into a first area including the fluid discharge surface and a second area without the fluid discharge surface. The partition plate has distribution holes whose number is less than a number of the plurality of fluid discharge holes in the lengthwise direction. A fluid introduction passage is in communication with the second area.
Abstract:
A monitoring apparatus for monitoring a raw material tank monitors the temperature of the raw material tank when the temperature of the raw material tank storing a solid or liquid raw material is raised to a set temperature by a heating unit. The monitoring apparatus includes: a temperature determination unit configured to determine whether the temperature has reached a stable range including the set temperature, and determine whether the temperature has deviated from the stable range; and a setting unit configured to set the set temperature of the heating unit to 0° C. when a predetermined timeout time has elapsed from a time point at which the temperature determination unit determined that the temperature deviated from the stable range.