Abstract:
In a mask pattern forming method, a resist film is formed over a thin film, the resist film is processed into resist patterns having a predetermined pitch by photolithography, slimming of the resist patterns is performed, and an oxide film is formed on the thin film and the resist patterns after an end of the slimming step in a film deposition apparatus by supplying a source gas and an oxygen radical or an oxygen-containing gas. In the mask pattern forming method, the slimming and the oxide film forming are continuously performed in the film deposition apparatus.
Abstract:
A film forming method includes: rotating a rotary table to revolve a substrate which is placed on the rotary table and has a recess in its surface; supplying a raw material gas to a first region on the rotary table; supplying an ammonia gas to a second region on the rotary table; forming a first SiN film in the recess by supplying the raw material gas to the first region and supplying the ammonia gas to the second region at a first flow rate, while the rotary table rotates at a first rotation speed; and forming a second SiN film in the recess such that the second SiN film is laminated on the first SiN film by supplying the raw material gas to the first region and supplying the ammonia gas to the second region at a second flow rate, while the rotary table rotates at a second rotation speed.
Abstract:
A processing method according to one aspect of the present disclosure includes varying pressure of a processing chamber in a state in which a plasma of a purge gas is formed in the processing chamber, the varying including removing a film deposited in the processing chamber, with the formed plasma.
Abstract:
There is provided a film formation processing method for forming, in a vacuum atmosphere, a silicon nitride film along an inner wall surface of a recess constituting a pattern formed on a surface of a substrate, which includes: forming the silicon nitride film on the substrate by repeating, plural times, a process of supplying a raw material gas containing silicon to the substrate and subsequently, supplying an ammonia gas to the substrate to generate a silicon nitride on the substrate; and subsequently, modifying the silicon nitride film by activating a hydrogen gas and an ammonia gas and supplying the activated hydrogen gas and the activated ammonia gas to the substrate.
Abstract:
A metal oxide film forming method includes: repeating a cycle a first predetermined number of times, the cycle including supplying a gas containing an organic metal precursor into a processing chamber where an object to be processed is accommodated, and supplying oxygen gas into the processing chamber after the gas containing the organic metal precursor is supplied into the processing chamber; and supplying ozone gas into the processing chamber, wherein repeating the cycle and supplying the ozone gas are repeated a second predetermined number of times, so that a metal oxide film is formed on a surface of the object to be processed.
Abstract:
A method of depositing a film of forming an oxide film containing a predetermined element on substrates using an apparatus including a turntable mounting substrates, first and second process areas above the upper surface of the turntable provided with gas supplying portions, a separation gas supplying portion between the first and second process areas, and a separation area including depositing the oxide film by rotating the turntable while supplying a reaction gas containing the predetermined element, the oxidation gas from the second gas supplying portion, and the separation gas; and rotating at least one turn while supplying the separation gas from the first gas supplying portion and the separation gas supplying portion, and the oxidation gas from the second gas supplying portion.
Abstract:
A method of depositing a film on substrates using an apparatus including a turntable mounting substrates, first and second process areas above the upper surface of the turntable provided with gas supplying portions, a separation gas supplying portion between the first and second process areas, and a separation area including depositing a first oxide film by rotating the turntable first turns while supplying a first reaction gas, the oxidation gas from the second gas supplying portion, and the separation gas; rotating at least one turn while supplying the separation gas from the first gas supplying portion and the separation gas supplying portion, and the oxidation gas from the second gas supplying portion; and rotating at least second turns to deposit a second oxide film while supplying a second reaction gas from the first gas supplying portion, the oxidation gas from the second gas supplying portion, and the separation gas.
Abstract:
A film deposition method is provided. A first metal compound film is deposited by performing a first cycle of exposing a substrate to a first source gas containing a first metal, and of exposing the substrate to a reaction gas reactive with the first source gas. Next, the first source gas is adsorbed on the first metal compound film by exposing the substrate having the first metal compound film deposited thereon to the first source gas. Then, a second metal compound film is deposited on the substrate by performing a second cycle of exposing the substrate having the first source gas adsorbed thereon to a second source gas containing a second metal, and of exposing the substrate to the reaction gas reactive with the second source gas.
Abstract:
A deposition method for embedding a SiN film in a recessed pattern formed on a surface of a substrate includes: (a) activating and supplying a first process gas containing NH3 to the surface of the substrate and causing NHx groups to adsorb on the surface of the substrate, where x is 1 or 2; (b) supplying a silicon-containing gas to the surface of the substrate on which the NHx groups are adsorbed and causing the silicon-containing gas to adsorb on the NHx groups; and (c) activating and supplying a second process gas containing N2 to the surface of the substrate on which the NHx groups are adsorbed and partly replacing the NHx groups with N groups, wherein (a) and (b) are repeated, and (c) is performed every time (a) and (b) are repeated a predetermined number of times.
Abstract:
There is provided a film forming apparatus for performing a film forming process by supplying a film forming gas to a substrate in a vacuum atmosphere, comprising: a processing container in which a mounting part for mounting a substrate thereon is provided; a heating part configured to heat the substrate mounted on the mounting part; an exhaust part configured to evacuate an inside of the processing container; a cooling gas supply part configured to supply a cooling gas into the processing container; a purge gas supply part configured to supply a purge gas into the processing container; and a control part configured to output a control signal so as to execute a step of applying a stress to a thin film formed inside the processing container.