Abstract:
An engagement operation of a dog clutch is carried out while an engagement operation of a second clutch is being carried out, that is, during a situation that an uplock is hard to occur because of a phase shift generated between meshing counterpart members of the dog clutch. Thus, the dog clutch is easily engaged, and it is possible to facilitate preparation for transmission of power through a first power transmission path. If the dog clutch is not engaged, the second clutch is engaged and a second power transmission path is established, so it is possible to start moving a vehicle by transmitting power through the second power transmission path. Thus, when the dog clutch is in a non-engaged state at the time of an N-to-D shift during a stop of the vehicle, it is possible to ensure the startability of the vehicle.
Abstract:
In a power transmission device in which a first power transmission path is formed by engagement of a first clutch and a dog clutch and a second power transmission path is formed by engagement of a second clutch, the first clutch is released from a state where the first clutch and the dog clutch are engaged, and when a front-rear rotation speed difference of the dog clutch becomes equal to or greater than a predetermined value after the start of a clutch-to-clutch gear shift for engaging the second clutch, complete release control for releasing the first clutch to lower the torque capacity of the first clutch is performed.
Abstract:
A clutch mechanism is configured to selectively change between a first power transmission path and a second power transmission path. The first power transmission path is configured to transmit torque to an output shaft via a transmission mechanism. The second power transmission path is configured to transmit the torque to the output shaft via a continuously variable transmission mechanism. An electronic control unit is configured to: (a) selectively change a power transmission path during traveling to one of the first power transmission path and the second power transmission path by controlling the clutch mechanism; and (b) in changing the power transmission path by controlling the clutch mechanism, control an operating point of the internal combustion engine during a change of the power transmission path so that the operating point crosses over an optimum fuel, consumption line of the internal combustion engine.
Abstract:
In a controller for a vehicle transmission in which a continuously variable transmission mechanism that is able to continuously change its speed ratio and a transmission mechanism having a constant speed ratio are provided in parallel with each other between an input shaft to which torque is transmitted from a driving force source and an output shaft that outputs torque to a drive wheel, the vehicle transmission including a friction engagement mechanism and an intermeshing engagement mechanism, the friction engagement mechanism selectively transmitting torque from the input shaft to the transmission mechanism, the intermeshing engagement mechanism arranged in series with the friction engagement mechanism on a downstream side of the friction engagement mechanism in a torque transmission direction from the input shaft toward the output shaft, the intermeshing engagement mechanism setting the transmission mechanism to a state where torque is transmittable between the input shaft and the output shaft, in changing from a state where both the friction engagement mechanism and the intermeshing engagement mechanism are released and the transmission mechanism is not able to transmit torque to a state where the intermeshing engagement mechanism is engaged and the transmission mechanism is able to transmit torque to the output shaft, a torque capacity of the friction engagement mechanism is configured to be increased to a torque capacity to such extent that the transmission mechanism rotates without a delay of start of engagement of the intermeshing engagement mechanism.
Abstract translation:在用于车辆变速器的控制器中,其中能够连续改变其速比的无级变速机构和具有恒定速比的变速机构在输入轴之间并联设置,转矩从 驱动力源和向驱动轮输出扭矩的输出轴,所述车辆变速器包括摩擦接合机构和啮合接合机构,所述摩擦接合机构选择性地将扭矩从所述输入轴传递到所述传动机构,所述啮合接合机构被布置 与摩擦接合机构的下游侧的摩擦接合机构在从输入轴朝向输出轴的转矩传递方向上串联的啮合机构,将传动机构设定为在输入轴和 o 输出轴在从摩擦接合机构和啮合啮合机构解除的状态变化时,变速机构不能将扭矩传递到啮合啮合机构的状态,传动机构能够传递扭矩 对于输出轴,摩擦接合机构的扭矩能力被构造成增加到扭矩能力,使得传动机构在没有相互啮合接合机构的接合开始的延迟的情况下旋转。
Abstract:
In a region in which a rate of change in slip ratio of a transmission belt with respect to a change in input torque exceeds a permissible slip ratio rate of change set in advance, a steep change in the slip ratio is suppressed by limiting the rate of change in the input torque.
Abstract:
A control apparatus for a vehicle is provided. The vehicle includes an engine, a dog clutch and a friction clutch. The dog clutch is configured to transmit power or interrupt transmission of power in a power transmission path that transmits power of the engine to a drive wheel. The dog clutch includes a synchromesh mechanism. The friction clutch is configured to transmit power or interrupt transmission of power in the power transmission path between the engine and the dog clutch. The control apparatus includes: an electronic control unit. The electronic control unit is configured to, when the synchromesh mechanism is operated in order to engage the dog clutch in a state where the vehicle is stopped and the friction clutch is released, increase a rotation speed of the engine as compared to when the synchromesh mechanism is not operated.
Abstract:
A control system and a control method for a vehicle, the vehicle includes an engine, an input shaft, an output shaft, a continuously variable transmission section, a stepped transmission section and a clutch mechanism, and a control device. The continuously variable transmission section and the stepped transmission section are provided between the input shaft and the output shaft. The clutch mechanism is provided in a torque transmission path between the stepped transmission section and drive wheels. The control device is configured to disengage the clutch mechanism in a case where a vehicle speed is at least equal to a specified value and the engine is stopped.
Abstract:
In a vehicle in which a continuously variable transmission and a gear mechanism are provided in parallel on a power transmission pathway between an input shaft and an output shaft, (i) an electronic control unit performs CVT shifting, in view of shift characteristics of C to C shifting in which the speed ratio is changed in stages, or (ii) then electronic control unit performs C to C shifting, in view of shift characteristics of CVT shifting in which the speed ratio is steplessly changed.
Abstract:
When a power transmission path of a power transmission system is set to a second power transmission path, a continuously variable transmission is controlled at a speed ratio (γ) that provides a higher vehicle speed in the case where an input shaft angular acceleration (dωi/dt) is small than in the case where the input shaft angular acceleration (dωi/dt) is large. Therefore, it is possible to control the speed ratio (γ) of the continuously variable transmission to a speed ratio (γ) that reflects an inertial loss (Tli) of the continuously variable transmission. The inertial loss (Tli) changes with the input shaft angular acceleration (dωi/dt). Thus, in a vehicle in which the continuously variable transmission and a gear mechanism are provided in parallel with each other between an input shaft and an output shaft, it is possible to appropriately reduce a loss of the idling continuously variable transmission.
Abstract:
A control device for vehicle is includes: transmission mechanism capable of setting fixed transmission gear ratio; continuously variable transmission provided in parallel with transmission mechanism; and path switching mechanism for selectively blocking torque transmission path that includes transmission mechanism and that is configured to dampen vibration. Control device for vehicle includes clutch mechanism wherein continuously variable transmission and transmission mechanism capable of setting constant transmission gear ratio are arranged in parallel between input shaft and output shaft, that selectively connects torque transmission path stretching from internal combustion engine to drive wheels via transmission mechanism in manner capable of transmitting torque, and wherein one clutch and other clutch are arranged in series and other clutch is arranged on relatively downstream side, and is configured to engage either one of one clutch and other clutch in case where torque is transmitted from internal combustion engine to drive wheels via continuously variable transmission.