摘要:
A highly integrated semiconductor memory device includes a substrate, a plurality of vertical pillars above the substrate, a plurality of connection lines extending over the vertical pillars, a plurality of lower via plugs provided above the vertical pillars and connecting the vertical pillars to the connection lines, a dummy connection line provided at a same level as the connection lines with respect to a main surface of the substrate, and a dummy via plug connected to a lower surface of the dummy connection line and having a different height than each of the lower via plugs. The vertical pillars, the connection lines, the lower via plugs are provided in a cell region, and the dummy connection line and the dummy via plug are provided in a dummy region.
摘要:
A vertical memory device includes a substrate including a cell region and a peripheral circuit region, gate electrodes sequentially stacked on the cell region of the substrate in a vertical direction substantially perpendicular to an upper surface of the substrate, a channel on the cell region and extending through the gate electrodes in the vertical direction, a first lower contact plug on the peripheral circuit region and extending in the vertical direction, a second lower contact plug on the peripheral circuit region adjacent to the first lower contact plug and extending in the vertical direction, and a first upper wiring electrically connected to the first lower contact plug. The first upper wiring is configured to and apply an electrical signal to the first lower contact plug. The second lower contact plug is not electrically connected to an upper wiring configured to apply an electrical signal.
摘要:
A flash memory device can include a memory cell array that includes a plurality of memory blocks, where each of the memory blocks has memory cells arranged at intersections of word lines and bit lines, where ones of the plurality of memory blocks are immediately adjacent to one another and define memory block pairs. The flash memory device can further include a row selection circuit that is configured to drive the word lines responsive to memory operations associated with a memory address, where the row selection circuit can include respective shield lines that are located between the memory blocks included in each pair and each of the memory blocks in the pair has a common source line therebetween.
摘要:
Semiconductor devices and methods of forming devices that have field oxides in trenches are disclosed. According to the methods, a semiconductor substrate is prepared. An upper trench is formed at a predetermined region of the semiconductor substrate and a bottom trench is formed at a bottom surface of the upper trench. A field oxide is formed to fill the bottom trench and the upper trench. At this time, the upper trench has a wider width than the bottom trench.
摘要:
A semiconductor device including a resistor and a method of forming the same. In the semiconductor device, a conductive pattern, which connects source regions, and a resistor are formed of the same material, which can be polysilicon. In the method, the conductive pattern and the resistor are simultaneously formed. Thus, it is possible to obtain a constant sheet resistance without an additional photo mask.
摘要:
A semiconductor memory device having a dummy active region is provided, which includes a plurality of parallel main active regions and a dummy active region coupled to ends of the main active regions. The main preferably active regions are arranged in a main memory cell array region and extend to or through a dummy cell array region surrounding the main memory cell array region. Further, the dummy active region is perpendicular to the main active regions. A redundancy cell array region may intervene between the main memory cell array region and the dummy cell array region. In this case, the main active regions are extended to the dummy cell array region through the redundancy cell array region.
摘要:
A semiconductor device may include a semiconductor substrate having an active region on a surface thereof. First, second, and third gate lines may cross the active region of the semiconductor substrate, and the first, second, and third gate lines may be arranged in parallel across the active region, and the second gate line may be between the first and third gate lines. A first insulating layer may fill a space between the first and second gate lines on the active region, and the first insulating layer may be a layer of a first insulating material. First insulating spacers may be provided on opposing sidewalls of the third gate line and on a sidewall of the second gate line adjacent to the third gate line, and the first insulating spacers may be spacers of the first insulating material. Second insulating spacers may be provided on sidewalls of the first insulating spacers so that the first insulating spacers are between the second insulating spacers and sidewalls of the second and third gate lines. Moreover, the second insulating spacers may be spacers of a second insulating material different than the first insulating material. Related methods are also discussed.
摘要:
An integrated circuit device is formed by forming a resistor pattern on a substrate. An interlayer dielectric layer is formed on the resistor pattern. The interlayer dielectric layer is patterned to form at least one opening that exposes the resistor pattern. A plug pattern is formed that fills the at least one opening and the plug pattern and resistor pattern are formed using a same material.
摘要:
A semiconductor device and method of manufacturing a semiconductor device include a plurality of first active regions and a second active region being formed on a substrate. The second active region is formed between two of the first active regions. A plurality of gate structures is formed on respective first active regions. A dummy gate structure is formed on the second active region, and a first voltage is applied to the dummy gate structure.
摘要:
Methods of fabricating a semiconductor device having multi-gate insulation layers and semiconductor devices fabricated thereby are provided. The method includes forming a pad insulation layer and an initial high voltage gate insulation layer on a first region and a second region of a semiconductor substrate respectively. The initial high voltage gate insulation layer is formed to be thicker than the pad insulation layer. A first isolation layer that penetrates the pad insulation layer and is buried in the semiconductor substrate is formed to define a first active region in the first region, and a second isolation layer that penetrates the initial high voltage gate insulation layer and is buried in the semiconductor substrate is formed to define a second active region in the second region. The pad insulation layer is then removed to expose the first active region. A low voltage gate insulation layer is formed on the exposed first active region. Accordingly, it can minimize a depth of recessed regions (dent regions) to be formed at edge regions of the first isolation layer during removal of the pad insulation layer, and it can prevent dent regions from being formed at edge regions of the second isolation layer.