Abstract:
A device is disclosed. The cell block includes a pin disposed at a Nth metal layer in a cell layout. The first metal interconnect is disposed at a (N+1)th metal layer above the Nth metal layer and stacked over the pin, and electrically coupled to the pin. The second interconnects are disposed at a (N+2)th metal layer and stacked over the first metal interconnect, and parallel to each other. The second metal interconnects are electrically coupled to the first metal interconnect, and forming an equivalent tapping point of the pin of the cell block. The equivalent tapping point and the pin are vertically overlapped with each other, and fabrication of the device is initiated after a DRC or a SEM simulation test is passed. A first width of at least one first metal interconnect is different from a second width of one of the plurality of second metal interconnects.
Abstract:
A device is disclosed. The cell block includes a pin disposed at a Nth metal layer in a cell layout. The first metal interconnect is disposed at a (N+1)th metal layer above the Nth metal layer and stacked over the pin, and electrically coupled to the pin. The second interconnects are disposed at a (N+2)th metal layer and stacked over the first metal interconnect, and parallel to each other. The second metal interconnects are electrically coupled to the first metal interconnect, and forming an equivalent tapping point of the pin of the cell block. The equivalent tapping point and the pin are vertically overlapped with each other, and fabrication of the device is initiated after a DRC or a SEM simulation test is passed. A first via connects the first metal interconnect to the pin, and the at least one first metal interconnect is perpendicular to the pin.
Abstract:
A method includes: providing a first layout of a first layer over a substrate, the first layer having at least one metal pattern, and generating a second layout by placing a cut mask at a first position relative to the substrate to remove material from a first region of the at least one metal pattern to provide a first metal pattern and placing the cut mask at a second position relative to the first layer over the substrate to remove material from a second region of the at least one metal pattern to provide a second metal pattern.
Abstract:
A device is disclosed that includes a cell block, at least one first metal interconnect, and second metal interconnects. The cell block includes a pin disposed at a Nth metal layer in a cell layout. The at least one first metal interconnect is disposed at a (N+1)th metal layer above the Nth metal layer and stacked over the pin, and electrically coupled to the pin. The second interconnects are disposed at a (N+2)th metal layer and stacked over the at least one first metal interconnect, and parallel to each other. The second metal interconnects are electrically coupled to the at least one first metal interconnect, and forming an equivalent tapping point of the pin of the cell block. The equivalent tapping point and the pin are vertically overlapped with each other, and fabrication of the device is initiated after a DRC or a SEM simulation test is passed.
Abstract:
A method identifies, as an independent node, any node representing a circuit pattern in any odd loop of a layout of a region of a layer of an IC that is not included in any other odd loop of the layout. The layer is to have a plurality of circuit patterns to be patterned using at least three photomasks. The method identifies, as a safe independent node, any independent node not closer than a threshold distance from any other independent nodes in another odd loop of the layout. The layout is modified, if the circuit patterns in the layout include any odd loop without any safe independent node, so that that after the modifying, each odd loop has at least one safe independent node.
Abstract:
A cell layout, a cell layout library and a synthesizing method are disclosed. The cell layout includes a cell block and a tapping connector. The cell block has a pin. The pin being disposed at a Nth metal layer in the cell layout. The tapping connector is disposed at a (N+1)th metal layer and a (N+2)th metal layer and stacked above the pin of the cell block. The tapping connector is electrically connected to the pin and forms an equivalent tapping point of the pin of the cell block. N is a positive integer greater than or equal to 1.
Abstract:
A received layout identifies a plurality of circuit components to be included in an integrated circuit (IC) layer for double patterning the layer using two photomasks, the layout including a plurality of first patterns to be included in the first photomask and at least one second pattern to be included in the second photomask. A selected one of the first patterns has first and second endpoints, to be replaced by a replacement pattern connecting the first endpoint to a third endpoint. At least one respective keep-out region is provided adjacent to each respective remaining first pattern except for the selected first pattern. Data are generated representing the replacement pattern, such that no part of the replacement pattern is formed in any of the keep-out regions. Data representing the remaining first patterns and the replacement pattern are output.
Abstract:
A method includes patterning a layer over a substrate with a first metal pattern; using a cut mask in a first position relative to the substrate to perform a first cut patterning for removing material from a first region within the first pattern; and using the same cut mask to perform a second cut patterning while in a second position relative to the same layer over the substrate, for removing material from a second region in a second metal pattern of the same layer over the substrate.
Abstract:
A method includes patterning a layer over a substrate with a first metal pattern; using a cut mask in a first position relative to the substrate to perform a first cut patterning for removing material from a first region within the first pattern; and using the same cut mask to perform a second cut patterning while in a second position relative to the same layer over the substrate, for removing material from a second region in a second metal pattern of the same layer over the substrate.
Abstract:
A method comprises (a) providing an integrated circuit (IC) layout comprising data representing a plurality of circuit patterns to be formed on or in a single layer of an IC by multi-patterning; (b) dividing the plurality of circuit patterns into two or more groups; (c) assigning the circuit patterns within each group to a respective mask to provide mask assignment data, for forming each group of circuit patterns on or in the single layer of the IC; (d) compressing the mask assignment data; and (e) storing the compressed mask assignment data to a non-transitory machine readable storage medium for use by an electronic design automation tool configured for reconstructing the mask assignment data from the compressed data.