Abstract:
A method includes: providing a first layout of a first layer over a substrate, the first layer having at least one metal pattern, and generating a second layout by placing a cut mask at a first position relative to the substrate to remove material from a first region of the at least one metal pattern to provide a first metal pattern and placing the cut mask at a second position relative to the first layer over the substrate to remove material from a second region of the at least one metal pattern to provide a second metal pattern.
Abstract:
Semiconductor structures are provided. The semiconductor structure includes a plurality of gate structures extending in a first direction formed over a substrate. The gate structures follow the following equation: 0.2 P gate min + 0.35 L gate min + 0.3 H gate min - 20 0.2 L gate min + 0.8 H gate min - 5 × 0.3 L gate min + 0.3 H gate min + 5 38 ≤ 0.32 Pgate min is the minimum value among gate pitches of the gate structures, and Lgate min is the minimum value among gate lengths of the gate structures. Hgate min is the minimum value among gate heights of the gate structures.
Abstract:
Semiconductor structures are provided. The semiconductor structure includes a plurality of gate structures extending in a first direction formed over a substrate and a contact formed adjacent to the gate structures over the substrate. The semiconductor structure further includes a plurality of metal layers formed over the gate structures. In addition, some of the metal layers include metal lines extending in the first direction, and some of the metal layers include metal lines extending in a second direction substantially perpendicular to the first direction. Furthermore, the gate structures follow the following equation: 0.2 P gate min + 0.35 L gate min + 0.3 H gate min - 20 0.2 L gate min + 0.8 H gate min - 5 × 0.3 L gate min + 0.3 H gate min + 5 38 ≤ 0.32 Pgate min is the minimum value among gate pitches of the gate structures. Lgate min is the minimum value among gate lengths of the gate structures. Hgate min is the minimum value among gate heights of the gate structures.
Abstract:
A method includes: providing a first layout of a first layer over a substrate, the first layer having at least one metal pattern, and generating a second layout by placing a cut mask at a first position relative to the substrate to remove material from a first region of the at least one metal pattern to provide a first metal pattern and placing the cut mask at a second position relative to the first layer over the substrate to remove material from a second region of the at least one metal pattern to provide a second metal pattern.
Abstract:
A method includes: providing a first layout of a first layer over a substrate, the first layer having at least one metal pattern, and generating a second layout by placing a cut mask at a first position relative to the substrate to remove material from a first region of the at least one metal pattern to provide a first metal pattern and placing the cut mask at a second position relative to the first layer over the substrate to remove material from a second region of the at least one metal pattern to provide a second metal pattern.
Abstract:
The present disclosure relates to a method and apparatus for forming a multiple patterning lithograph (MPL) compliant integrated circuit layout by operating a construction validation check on unassembled IC cells to enforce design restrictions that prevent MPL conflicts after assembly. In some embodiments, the method is performed by generating a plurality of unassembled integrated circuit (IC) cells having a multiple patterning design layer. A construction validation check is performed on the unassembled IC cells to identify violating IC cells having shapes disposed in patterns comprising potential multiple patterning coloring conflicts. Design shapes within a violating IC cell are adjusted to achieve a plurality of violation free IC cells. The plurality of violation free IC cells are then assembled to form an MPL compliant IC layout. Since the MPL compliant IC layout is free of coloring conflicts, a decomposition algorithm can be operated without performing a post assembly color conflict check.
Abstract:
A method includes patterning a layer over a substrate with a first metal pattern; using a cut mask in a first position relative to the substrate to perform a first cut patterning for removing material from a first region within the first pattern; and using the same cut mask to perform a second cut patterning while in a second position relative to the same layer over the substrate, for removing material from a second region in a second metal pattern of the same layer over the substrate.
Abstract:
A method includes patterning a layer over a substrate with a first metal pattern; using a cut mask in a first position relative to the substrate to perform a first cut patterning for removing material from a first region within the first pattern; and using the same cut mask to perform a second cut patterning while in a second position relative to the same layer over the substrate, for removing material from a second region in a second metal pattern of the same layer over the substrate.
Abstract:
A method identifies, as an independent node, any node representing a circuit pattern in any odd loop of a layout of a region of a layer of an IC that is not included in any other odd loop of the layout. The layer is to have a plurality of circuit patterns to be patterned using at least three photomasks. The method identifies, as a safe independent node, any independent node not closer than a threshold distance from any other independent nodes in another odd loop of the layout. The layout is modified, if the circuit patterns in the layout include any odd loop without any safe independent node, so that that after the modifying, each odd loop has at least one safe independent node.