Abstract:
Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a first fin partially surrounded by a first isolation structure and protruding through a top surface thereof. The semiconductor device also includes a second fin partially surrounded by a second isolation structure and protruding through a top surface thereof. The top surface of the first isolation structure is higher than the top surface of the second isolation structure such that the second fin has a height higher than that of the first fin. The second isolation structure has a dopant concentration higher than that of the first isolation structure.
Abstract:
A system and method of designing a layout for a plurality of different logic operation (LOP) cell technologies includes defining a priority for each LOP cell technology in the plurality of different LOP technologies and forming a layout of the plurality of different LOP cells for formation on a substrate with at least some of the LOP cells of higher priority LOP technologies overlapping LOP cells of lower priority LOP technologies. The system can include a processor coupled to memory where stored code defines the priority for each different cell technology in the plurality of LOP cells and (when the code is executed) the processor forms the layout of a plurality of different LOP cells. All of the LOP cells of higher priority LOP technologies overlap LOP cells of lower priority. The system or method also avoids the overlap of higher priority LOP cells by lower priority LOP cells.
Abstract:
A system and method of designing a layout for a plurality of different logic operation (LOP) cell technologies includes defining a priority for each LOP cell technology in the plurality of different LOP technologies and forming a layout of the plurality of different LOP cells for formation on a substrate with at least some of the LOP cells of higher priority LOP technologies overlapping LOP cells of lower priority LOP technologies. The system can include a processor coupled to memory where stored code defines the priority for each different cell technology in the plurality of LOP cells and (when the code is executed) the processor forms the layout of a plurality of different LOP cells. All of the LOP cells of higher priority LOP technologies overlap LOP cells of lower priority. The system or method also avoids the overlap of higher priority LOP cells by lower priority LOP cells.
Abstract:
Some embodiments relate to a semiconductor device. The semiconductor device includes a layer disposed over a substrate. A conductive body extends through the layer. A plurality of bar or pillar structures are spaced apart from one another and laterally surround the conductive body. The plurality of bar or pillar structures are generally concentric around the conductive body.
Abstract:
A semiconductor device with the metal fuse is provided. The metal fuse connects an electronic component (e.g., a transistor) and a existing dummy feature which is grounded. The protection of the metal fuse can be designed to start at the beginning of the metallization formation processes. The grounded dummy feature provides a path for the plasma charging to the ground during the entire back end of the line process. The metal fuse is a process level protection as opposed to the diode, which is a circuit level protection. As a process level protection, the metal fuse protects subsequently-formed circuitry. In addition, no additional active area is required for the metal fuse in the chip other than internal dummy patterns that are already implemented.
Abstract:
The present disclosure relates to an integrated chip having one or more back-end-of-the-line (BEOL) selectivity stress films that apply a stress that improves the performance of semiconductor devices underlying the BEOL selectivity stress films, and an associated method of formation. In some embodiments, the integrated chip has a semiconductor substrate with one or more semiconductor devices having a first device type. A stress transfer element is located within a back-end-of-the-line stack at a position over the one or more semiconductor devices. A selectivity stress film is located over the stress transfer element. The selectivity stress film induces a stress upon the stress transfer element, wherein the stress has a compressive or tensile state depending on the first device type of the one or more semiconductor devices. The stress acts upon the one or more semiconductor devices to improve their performance.
Abstract:
The present disclosure relates to an integrated chip having one or more back-end-of-the-line (BEOL) stress compensation layers that reduce stress on one or more underlying semiconductor devices, and an associated method of formation. In some embodiments, the integrated chip has a semiconductor substrate with one or more semiconductor devices. A stressed element is located within a back-end-of-the-line stack at a position overlying the one or more semiconductor devices. A stressing layer is located over the stressed element induces a stress upon the stressed element. A stress compensation layer, located over the stressed element, provides a counter-stress to reduce the stress induced on the stressed element by the stressing layer. By reducing the stress induced on the stressed element, stress on the semiconductor substrate is reduced, improving uniformity of performance of the one or more semiconductor devices.
Abstract:
An integrated circuit includes a p-type region formed beneath a surface of a semiconductor substrate, and an n-type region formed beneath the surface of the semiconductor substrate. The n-type region meets the p-type region at a p-n junction. A diffusion barrier structure, which is beneath the surface of the semiconductor substrate and extends along a side of the p-n junction, limits lateral diffusion between the p-type region and n-type region.
Abstract:
A semiconductor device includes a channel region, a source/drain region adjacent to the channel region, and a source/drain epitaxial layer. The source/drain epitaxial layer includes a first epitaxial layer epitaxially formed on the source/drain region, a second epitaxial layer epitaxially formed on the first epitaxial layer and a third epitaxial layer epitaxially formed on the second epitaxial layer. The first epitaxial layer includes at least one selected from the group consisting of a SiAs layer, a SiC layer and a SiCP layer.
Abstract:
A method of manufacturing a semiconductor device, a plurality of fin structures are formed over a semiconductor substrate. The fin structures extend along a first direction and are arranged in a second direction crossing the first direction. A plurality of sacrificial gate structures extending in the second direction are formed over the fin structures. An interlayer dielectric layer is formed over the plurality of fin structures between adjacent sacrificial gate structures. The sacrificial gate structures are cut into a plurality of pieces of sacrificial gate structures by forming gate end spaces along the second direction. Gate separation plugs are formed by filling the gate end spaces with two or more dielectric materials. The two or more dielectric materials includes a first layer and a second layer formed on the first layer, and a dielectric constant of the second layer is smaller than a dielectric constant of the first layer.