摘要:
An improved row electrode driving circuit can drive a matrix type display apparatus without necessitating digital signals transmitted between partial row electrode driving circuits. Each of the partial row electrode driving circuits is allocated with a number. In each of the partial row electrode driving circuits, shift register shifts a pulse signal to sequentially output it from a plurality of outputs. At each time when a predetermined number of clock pulses have been counted, a count signal is produced. When the shift direction is set to the upper direction, a signal indicating the allocated number is produced. When the shift direction is set to the lower direction, a signal indicating a number which is obtained by subtracting the allocated number from a specified number is produced. When this number and the clock pulse count number satisfy a predetermined relationship, the pulse signal is output.
摘要:
An improved column electrode driving circuit can drive a matrix type display apparatus without necessitating that digital signals be transmitted between partial column electrode driving circuits. Each of the partial column electrode driving circuits is allocated with a number. In each of the partial column electrode driving circuits, a shift register shifts a sample signal to sequentially output it from a plurality of outputs. At each time when a predetermined number of clock pulses have been counted, a count signal is produced. When the shift direction is set to the right direction, a signal indicating the allocated number is produced. When the shift direction is set to the left direction, a signal indicating a number, which is obtained by subtracting the allocated number from a specified number, is produced. When this number and the clock pulse count number satisfy a predetermined relationship, the sample signal is output.
摘要:
In an active matrix substrate including an array of thin film transistors arranged in a matrix, source buses and gate buses formed on an insulating substrate, a contact pad is formed on the source buses and the gate buses so that a metal portion of these buses is exposed, in order to provide an access for probing to monitor the waveform of signals.
摘要:
A liquid crystal display panel is so constructed that a plurality of pixels are arranged in a matrix form having the number of lines twice that of horizontal scanning lines for one field of interlaced scanning video signals obtained by scanning an original image every other line, the arrangement of the pixels being shifted horizontally by one-half of a pixel between adjacent upper and lower lines. A row driving circuit applies, to the pixels in the upper line of the two adjacent upper and lower lines, data voltages obtained by sampling a video signal representing one horizontal scanning line by a clock signal of the timing that matches the number of pixels in the upper line and the arrangement of the pixels, and applies, to the pixels in the lower line, data voltages obtained by sampling the above video signal representing one horizontal scanning line by a clock signal of the timing shifted by 1/2 cycle from the above clock signal. Thus, one horizontal scanning line represented by the video signal is displayed using the two upper and lower lines of pixels, thereby enhancing the display quality of the produced image.
摘要:
A driving method of the invention is suitable for an active matrix type liquid crystal display apparatus having row and column electrodes. The driving method includes the steps of applying a gate-one pulse for writing data for one line to the column electrodes to each of the row electrodes. The gate-on pulse has a pulse waveform which includes at least one concave portion during a horizontal period.
摘要:
The column electrode driving circuit is suitable for driving a display apparatus which has a delta arrangement display unit. The video signals for two rows in the display unit are sampled simultaneously by two sample-hold circuits with sampling timings which differ mutually by one-half of the sampling period. The outputs of the two sample-hold circuits are alternatingly supplied to column electrodes of the display unit.
摘要:
A mechanism for opening and closing an opening portion is disclosed. The mechanism can simply and reliably open and close the opening portion without requiring a spring but using a simple mechanism and can stably maintain the closed state of the opening portion. When the opening portion is closed by a lid, with the head end side of the opening and closing member being protruded from the opening portion, the head end of the opening and closing member makes contact with the surface of the lid which faces the inner side of the opening portion, causing the lid to rotate about one end thereof which is rotatably supported by a rotation supporting shaft. This changes the state of the opening portion from the closed state to the opened state. When the head of the opening and closing member retracts into the opening portion from the state in which the opening and closing member is protruded from the opening portion, the protrusion of the opening and closing member will be made to engage the head end of a wound section of the lid, causing the lid to rotate about the one end of thereof which is rotatably supported by the rotation supporting shaft. This changes the state of the opening portion from the opened state to the closed state.
摘要:
An LED comprising a light-generating semiconductor region having an active layer sandwiched between two confining layers of opposite conductivity types. A cathode is arranged centrally on one of the opposite major surfaces of the semiconductor region from which is emitted the light. An array of discrete gold regions are formed via transition metal regions on the other major surface of the semiconductor region at which is exposed one of the confining layers which is of n-type AlGaInP semiconductor material. The gold is thermally diffused into the confining layer via the transition metal regions at a temperature less than the eutectic point of gold and gallium, thereby creating an array of ohmic contact regions of alloyed or intermingled gold and gallium, which are less absorptive of light than their conventional counterparts, to a thickness of 20 to 1000 angstroms. After removing the transition metal regions and gold regions from the surface of the light-generating semiconductor region, a reflective layer of aluminum is formed so as to cover both the ohmic contact regions and the exposed surface portions of the AlGaInP confining layer. An electroconductive base-plate of doped silicon is then bonded to the reflective layer.
摘要:
A method of fabricating an ultrasonic coupler to a specified configuration such that the ultrasonic coupler is fabricated by freezing and defrosting an aqueous solution containing a polymer. A surface of the fabricated ultrasonic coupler is made to be smooth. The ultrasonic coupler is fabricated using an ultrasonic coupler fabricating die including members each made of silicone rubber which varies in compliance with the expansion and the contraction of the aqueous solution. To fabricate the ultrasonic coupler, the aqueous solution containing a polyvinyl alcohol (PVA) is poured into the die. Then, the die is subjected to the process of cooling to below the freezing point and the process of recovery to room temperature so as to progress a bridging of the PVA, thereby progressing a gelling of the aqueous solution.
摘要:
A light emitting diode has a semiconductor region for production of light. The semiconductor region is a lamination of two complementary layers, an n-type semiconductor layer, an active layer, a p-type semiconductor layer, another complementary layer, and an ohmic contact layer, in that order from a first major surface of the semiconductor layer, from which the light is emitted, toward a second. A reflective metal layer covers the second major surface of the semiconductor region via a transparent layer for reflecting the light that has traveled through the transparent layer from the semiconductor region. The transparent layer serves to prevent the semiconductor region and the reflective layer from alloying by heat treatments during the manufacture of the LED.