摘要:
A two-layer structured electric power application electrode including a non-split electrode consisting of a single planar plate and six split electrodes arranged on the non-split electrode so as to be electrically in contact with the non-split electrode is arranged on the upper side of a discharge chamber provided within a vacuum container such that the power application electrode faces a strip substrate in parallel. The split electrodes are arranged in such a manner as to form a planar plane, and the distance between the surfaces of the split electrodes facing the strip substrate and the strip substrate is uniform. The total area of the surfaces of the split electrodes facing the strip substrate is the same as the area of the non-split electrode on which the split electrodes are mounted.
摘要:
A film-forming apparatus comprising a vacuum chamber, a power application electrode, a raw material gas introduction portion through which a raw material gas is introduced into the vacuum chamber, and an exhaustion portion through which the vacuum chamber is exhausted, the power application electrode being arranged so as to oppose a substrate for film formation positioned in the vacuum chamber, characterized in that at least said raw material gas introduction portion or the exhaustion portion is provided with an opening adjusting member having a desired thickness for intercepting the plasma, and the power application electrode and the opening adjusting member are arranged to satisfy an equation a or c≧b, with a being a shortest distance between the power application electrode and the opening adjusting member provided at the raw material gas introduction portion, c being a shortest distance between the power application electrode and the opening adjusting member provided at the exhaustion portion, and b being an average distance between the substrate and a horizontal plane face of the power application electrode which is opposed to a face of the substrate.
摘要:
A two-layer structured electric power application electrode including a non-split electrode consisting of a single planar plate and six split electrodes arranged on the non-split electrode so as to be electrically in contact with the non-split electrode is arranged on the upper side of a discharge chamber provided within a vacuum container such that the power application electrode faces a strip substrate in parallel. The split electrodes are arranged in such a manner as to form a planar plane, and the distance between the surfaces of the split electrodes facing the strip substrate and the strip substrate is uniform. The total area of the surfaces of the split electrodes facing the strip substrate is the same as the area of the non-split electrode on which the split electrodes are mounted. This improves the uniformity in plasma generated in the apparatus for forming a deposited film and enables cutting-down of the costs required to form deposited films.
摘要:
A process for producing a semiconductor layer by introducing a raw gas into a discharge chamber and supplying high-frequency power to the chamber to decompose the raw gas by discharge, thereby forming a semiconductor layer on a substrate within the discharge chamber, the process comprising the steps of supplying high-frequency power of at least very high frequency (VHF) as the high-frequency power; supplying bias power of direct current power and/or high-frequency power of radio-frequency (RF) together with the high-frequency power of VHF to the discharge chamber; and controlling a direct current component of an electric current flowing into an electrode, to which the bias power is supplied, so as to fall within a range of from 0.1 A/m2 to 10 A/m2 in terms of a current density based on the area of an inner wall of the discharge chamber. A good-quality semiconductor layer can be deposited over a large area at a high speed.
摘要翻译:一种制造半导体层的方法,该方法是通过将原料气体引入放电室并向室内供给高频电力,以通过放电来分解原料气体,由此在放电室内的基板上形成半导体层,该方法包括 提供至少非常高频(VHF)的高频功率作为高频功率的步骤; 将直流电力和/或射频(RF)的高频功率与VHF的高频功率一起提供给放电室; 并且以电流密度为基础控制流入施加偏压功率的电极的电流的直流分量,以0.1A / m 2至10A / m 2的范围内 放电室内壁面积。 高质量的半导体层可以在大面积上高速沉积。
摘要:
Provided are a photovoltaic element suitable for practical use, low in cost, high in reliability, and high in photoelectric conversion efficiency, and a fabrication process thereof. In the photovoltaic element having stacked layers of non-single-crystal semiconductors, at least an i-type semiconductor layer and a second conductivity type semiconductor layer are stacked on a first conductivity type semiconductor layer, and the second conduction type semiconductor layer has a layer A formed by exposing the surface of the i-type semiconductor layer to a plasma containing a valence electron controlling agent and a layer B deposited on the layer A by a CVD process using at least the valence electron controlling agent and the main constituent elements of the i-type semiconductor layer.
摘要:
A photovoltaic device comprises a semiconductor region having at least one set of semiconductor layers comprised of a first semiconductor layer having a first conductivity type, an intrinsic or substantially intrinsic second semiconductor layer, and a third semiconductor layer having a conductivity type opposite to that of the first conductivity type, the layers being formed in this order, and first and second electrodes provided such that the electrodes interpose the semiconductor region; wherein the density of a dopant impurity determining the conductivity type of the first semiconductor layer in a set of semiconductor layers which is in contact with the first electrode is varied so as to be lower on the side of the first electrode, or the grain size of crystals in the first semiconductor layer is varied so as to be smaller on the side of the first electrode. This provides a photovoltaic device that does not exhibit great lowering of characteristics even when short circuits locally occur in the semiconductor layers during long-term service.
摘要:
A process for producing a semiconductor device such as a photovoltaic element including a solar cell or a photosensor having a photoelectric conversion semiconductor layer formed by sequentially forming a p-type or n-type semiconductor layer composed of a non-single crystalline silicon series semiconductor material, an i-type semiconductor layer composed of a non-single crystalline silicon series semiconductor material, and an n-type or p-type semiconductor layer composed of a non-single crystalline silicon series semiconductor material on a substrate by means of plasma CVD, characterized in that at least one i-type semiconductor as said i-type semiconductor layer is formed in a discharge chamber having a cathode electrode by means of VHF plasma CVD using a silicon-containing raw material gas, wherein a VHF power of a wattage which is two times or less that of a VHF power required for decomposing 100% of said silicon-containing raw material gas is applied to said cathode electrode.
摘要:
The invention provides a process for producing a semiconductor layer by introducing a raw gas into a discharge chamber and supplying high-frequency power to the chamber to decompose the raw gas by discharge, thereby forming a semiconductor layer on a substrate within the discharge chamber, the process comprising the steps of supplying high-frequency power of at least very high frequency (VHF) as the high-frequency power; supplying bias power of direct current power and/or high-frequency power of radio-frequency (RF) together with the high-frequency power of VHF to the discharge chamber; and controlling a direct current component of an electric current flowing into an electrode, to which the bias power is supplied, so as to fall within a range of from 0.1 A/m2 to 10 A/m2 in terms of a current density based on the area of an inner wall of the discharge chamber. A good-quality semiconductor layer can be deposited over a large area at a high speed.
摘要翻译:本发明提供一种通过将原料气体引入放电室并向室内供给高频电力以通过放电分解原料气体从而在放电室内的基板上形成半导体层来制造半导体层的方法, 过程包括以下步骤:提供至少非常高频(VHF)的高频功率作为高频功率; 将直流电力和/或射频(RF)的高频功率与VHF的高频功率一起提供给放电室; 并且以电流密度为基础控制流入施加偏压功率的电极的电流的直流分量,以0.1A / m 2至10A / m 2的范围内 放电室内壁面积。 高质量的半导体层可以在大面积上高速沉积。
摘要:
A chemical-reaction inducing means is provided in an exhaust line connecting a processing space for subjecting a substrate or a film to plasma processing to an exhaust means, and at least either an unreacted gas or byproduct exhausted from the processing space are caused to chemically react without allowing plasma in the processing space to reach the chemical-reaction inducing means, thereby improving the processing ability of the chemical-reaction inducing means to process the unreacted gas or byproduct.
摘要:
A chemical-reaction inducing means is provided in an exhaust line connecting a processing space for subjecting a substrate or a film to plasma processing to an exhaust means, and at least either an unreacted gas or byproduct exhausted from the processing space are caused to chemically react without allowing plasma in the processing space to reach the chemical-reaction inducing means, thereby improving the processing ability of the chemical-reaction inducing means to process the unreacted gas or byproduct.