摘要:
Improved method of heat-treating a glass substrate, especially where the substrate is thermally treated (such as formation of films, growth of films, and oxidation) around or above its strain point. If devices generating heat are formed on the substrate, it dissipates the heat well. An aluminum nitride film is formed on at least one surface of the substrate. This aluminum nitride film acts as a heat sink and prevents local concentration of heat produced by the devices such as TFTs formed on the glass substrate surface.
摘要:
Improved method of heat-treating a glass substrate, especially where the substrate is thermally treated (such as formation of films, growth of films, and oxidation) around or above its strain point. If devices generating heat are formed on the substrate, it dissipates the heat well. An aluminum nitride film is formed on at least one surface of the substrate. This aluminum nitride film acts as a heat sink and prevents local concentration of heat produced by the devices such as TFTs formed on the glass substrate surface.
摘要:
Improved method of heat-treating a glass substrate, especially where the substrate is thermally treated (such as formation of films, growth of films, and oxidation) around or above its strain point. If devices generating heat are formed on the substrate, it dissipates the heat well. An aluminum nitride film is formed on at least one surface of the substrate. This aluminum nitride film acts as a heat sink and prevents local concentration of heat produced by the devices such as TFTs formed on the glass substrate surface.
摘要:
Improved method of heat-treating a glass substrate, especially where the substrate is thermally treated (such as formation of films, growth of films, and oxidation) around or above its strain point. If devices generating heat are formed on the substrate, it dissipates the heat well. An aluminum nitride film is formed on at least one surface of the substrate. This aluminum nitride film acts as a heat sink and prevents local concentration of heat produced by the devices such as TFTs formed on the glass substrate surface.
摘要:
Improved method of heat-treating a glass substrate, especially where the substrate is thermally treated (such as formation of films, growth of films, and oxidation) around or above its strain point If devices generating heat are formed on the substrate, it dissipates the heat well. An aluminum nitride film is formed on at least one surface of the substrate. This aluminum nitride film acts as a heat sink and prevents local concentration of heat produced by the devices such as TFTs formed on the glass substrate surface.
摘要:
A method of heat-treating a glass substrate where the substrate is thermally treated (such as the formation of films, growth of films, and oxidation) around or above its strain point. After thermally treating the substrate around or above its strain point the glass substrate may be slowly cooled at a rate of 0.01.degree. to 0.5.degree. C./min to achieve maximum shrinkage of the substrate. Following further thermal treatments the substrate may be quickly cooled at a rate of 10.degree. C./min to 300.degree. C./sec to suppress shrinkage of the glass substrate. The substrate can have films such as aluminum nitrate films, silicon oxide films, silicon films, insulating films, semiconductor films, etc. Film formation can occur either before or after thermal treatment of the substrate around or above its strain point and before further thermal treatments.
摘要:
In forming various types of insulating films in manufacture of a semiconductor device, carbon is gasified into CHx, COH etc. during film formation by adding active hydrogen and nitrogen oxide to reduce the carbon content during the film formation, and the effect of blocking impurities such as alkali metals is improved.
摘要:
A silicon oxide film is formed to cover an island non-monocrystalline silicon region by plasma CVD using an organic silane having ethoxy groups (e.g., TEOS) and oxygen as raw materials, while hydrogen chloride or a chlorine-containing hydrocarbon (e.g., trichloroethylene) of a fluorine-containing gas is added to the plasma CVD atmosphere, preferably in an amount of from 0.01 to 1 mol % of the atmosphere so as to reduce the alkali elements from the silicon oxide film formed and to improve the reliability of the film. Prior to forming the silicon oxide film, the silicon region may be treated in a plasma atmosphere containing oxygen and hydrogen chloride or a chlorine-containing hydrocarbon. The silicon oxide film is obtained at low temperatures and this has high reliability usable as a gate-insulating film in a semiconductor device.
摘要:
An improved image sensor is described. The sensor includes a photosensitive semiconductor device comprises a glass substrate, a light blocking electrode formed on the glass substrate, a photosensitive semiconductor film formed on the electrode, a transparent electrode. A light window is opened through the semiconductor device. On the light path including the light window, an uneven interface is formed in order that light rays incident on the sensor is modified and reachs the photosensitive semiconductor after reflection on an original.