摘要:
Provided is a manufacturing method of a crystallized rare-earth thin films on a glass or a silicon substrate. This manufacturing method of a crystallized metal oxide thin film includes a step of retaining an metal organic thin film or a metal oxide film containing at least one type of rare-earth metal element selected from a group comprised of Y, Dy, Sm, Gd, Ho, Eu, Tm, Tb, Er, Ce, Pr, Yb, La, Nd and Lu formed on a substrate at a temperature of 250 to 600° C., and a step of crystallizing the organic metal thin film or the metal oxide film while irradiating ultraviolet radiation having a wavelength of 200 nm or less.
摘要:
Provided is a manufacturing method of a crystallized rare-earth thin films on a glass or a silicon substrate. This manufacturing method of a crystallized metal oxide thin film includes a step of retaining an metal organic thin film or a metal oxide film containing at least one type of rare-earth metal element selected from a group comprised of Y, Dy, Sm, Gd, Ho, Eu, Tm, Tb, Er, Ce, Pr, Yb, La, Nd and Lu formed on a substrate at a temperature of 250 to 600° C., and a step of crystallizing the organic metal thin film or the metal oxide film while irradiating ultraviolet radiation having a wavelength of 200 nm or less.
摘要:
Provided is a resistor film comprising vanadium oxide as a main component, wherein metal-to-insulator transition is indicated in the vicinity of room temperature in temperature variations of electric resistance, there is no hysteresis in a resistance change in response to temperature variations or the temperature width is small at less than 1.5K even if there is hysteresis, and highly accurate measurement can be provided when used in a bolometer.Upon producing the resistor film comprising vanadium oxide as a main component by treating a coating film of an organovanadium compound via laser irradiation or the like, a crystalline phase and a noncrystalline (amorphous) phase are caused to coexist in the resistor film.
摘要:
Provided is a resistor film comprising vanadium oxide as a main component, wherein metal-to-insulator transition is indicated in the vicinity of room temperature in temperature variations of electric resistance, there is no hysteresis in a resistance change in response to temperature variations or the temperature width is small at less than 1.5K even if there is hysteresis, and highly accurate measurement can be provided when used in a bolometer.Upon producing the resistor film comprising vanadium oxide as a main component by treating a coating film of an organovanadium compound via laser irradiation or the like, a crystalline phase and a noncrystalline (amorphous) phase are caused to coexist in the resistor film.
摘要:
Provided is a manufacturing method of a high-performance phosphor thin film material that enables a crystallized pervoskite-related Ti, Zr oxide thin film to be formed on a glass or a silicon substrate. This manufacturing method of a phosphor thin film includes a step of forming an organic metal thin film or a metal oxide film obtained by adding at least one element selected from a group comprised of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu to a metal oxide represented with a composition formula of ABO3, A2BO4, A3B2O7 (provided that there may be a deficiency at the A, B, O sites) wherein A is an element selected from Ca, Sr and Ba, and B is a metal element selected from Ti and Zr on a substrate, and a step of irradiating an ultraviolet lamp to the substrate at room temperature and thereafter irradiating an ultraviolet laser thereto while retaining the substrate at a temperature of 400° C. or less. The film is subject to oxidation treatment after being crystallized.
摘要翻译:提供一种能够在玻璃或硅衬底上形成结晶的与渗透相关的Ti,Zr氧化物薄膜的高性能荧光体薄膜材料的制造方法。 这种荧光体薄膜的制造方法包括:形成通过添加选自由Ce,Pr,Nd,Sm,Eu,Gd,Tb等构成的组中的至少一种的有机金属薄膜或金属氧化物膜的工序, Dy,Ho,Er,Tm,Yb和Lu与由组成式ABO 3,A 2 BO 4表示的金属氧化物反应, A 3,B 2 O 7(前提是A,B,O位点可能存在缺陷),其中A是选择的元素 从Ca,Sr和Ba中选出,B是在基板上选自Ti和Zr的金属元素,以及在室温下向紫外灯照射紫外线,然后在保持基板的同时照射紫外线激光的步骤 400℃以下。 在结晶后,将该膜进行氧化处理。
摘要:
A thin film which comprises an organic metal salt or an alkoxide salt or an amorphous thin film is formed on a substrate, wherein each of the thin films enables the formation of a Dion-Jacobson perovskite-type metal oxide represented by the composition formula A(Bn−1MnO3n+1) (wherein n is a natural number of 2 or greater; A represents one or more monovalent cations selected from Na, K, Rb and Cs; B comprises one or more components selected from a trivalent rare earth ion, Bi, a divalent alkaline earth metal ion and a monovalent alkali metal ion; and M comprises one or more of Nb and Ta; wherein a solid solution may be formed with Ti and Zr) on a non-oriented substrate. The resulting product is maintained at the temperature between room temperature and 600° C.; and crystallization is achieved while irradiating the amorphous thin film or the thin film comprising the organic metal salt or the alkoxide salt on the substrate with ultraviolet light such as ultraviolet laser. In this manner, it becomes possible to produce an oriented Dion-Jacobson perovskite-type oxide thin film characterized in that thin film can be oriented on the substrate in a (001) direction.
摘要:
A thin film which comprises an organic metal salt or an an alkoxide salt or an amorphous thin film is formed on a substrate, wherein each of the thin films enables the formation of a Dion-Jacobson perovskite-type metal oxide represented by the composition formula A(Bn−1MnO3n+1) (wherein n is a natural number of 2 or greater; A represents one or more monovalent cations selected from Na, K, Rb and Cs; B comprises one or more components selected from a trivalent rare earth ion, Bi, a divalent alkaline earth metal ion and a monovalent alkali metal ion; and M comprises one or more of Nb and Ta; wherein a solid solution may be formed with Ti and Zr) on a non-oriented substrate. The resulting product is maintained at the temperature between room temperature and 600° C.; and crystallization is achieved while irradiating the amorphous thin film or the thin film comprising the organic metal salt or the alkoxide salt on the substrate with ultraviolet light such as ultraviolet laser. In this manner, it becomes possible to produce an oriented Dion-Jacobson perovskite-type oxide thin film characterized in that thin film can be oriented on the substrate in a (001) direction.
摘要:
In a developing environment, a game program exists in a product ROM and a debug program exists in another ROM which is a test ROM. The debug program includes a time adjusting program and other debug routine programs. The game program includes some statements for the debug program. When a ROM cartridge is produced as a product ROM cartridge, the test ROM is detached from the ROM cartridge and the statements for the debug program are deleted from the game program in the product ROM. The deleted area in the product ROM is left as an unusable area. However, the deleted area is very few, because the size of the statements for debug program is much fewer than the size of the debug program. Therefore, the game program is able to use almost all product ROM area.
摘要:
In a game apparatus and a method of debugging a game program, a based time is determined, then a start time of a debugging process in a game is set. Next, the based time is compared with the start time. If the based time is bigger than the start time, the start time of the debugging process in the game must be set again. In the game apparatus and the method of the present invention, therefore, the time in the game program is not inconsistency with a contents of a game history. The game program can be debugged correctly. Further, in developing a game program, a game program debug dose not waste working-time and working-load of a developer.
摘要:
The object of the present invention is to provide an alloy steel having excellent erosion resistance to molten zinc and used as a material for parts and members for molten zinc plating facilities, e.g. sink roll, coating roll, roll frame and snout. The alloy in the present invention consists essentially of, by weight percent, about 0.10 to 0.17 wt % of carbon, from about 0.30 to 2% of silicon, from about 0.30 to about 2% manganese, from about 10% to 20% nickel, from about 20% to about 35% chromium, from about 0.50% to about 5% molybdenum and from not less than about 0.40% to about 0.75% nitrogen, the balance consisting of substantially of Fe, and unavoidable impurities. Tungsten, from about 0.5% to about 5%, may also be added to enhance the strength of the alloy.