摘要:
A Bi-Sr-Ca-Cu-O-type superconductive film is formed on an MgO (100) single crystal substrate by the chemical vapor deposition method at a film formation speed of 780.degree. C. or less and a film formation speed of 1.0 nm/min or more, and exhibits an a-axis or b-axis preferential growth with respect to the substrate surface.
摘要:
A Bi-Sr-Ca-Cu-O system superconducting thin film formed on a substrate comprising [110] single crystals of an ABO.sub.3 type oxide having a perovskite structure, in which a (119) face is selectively grown relative to a substrate surface. The film is formed on the substrate by chemical vapor deposition process. A method of manufacturing a BiSrCaCuO system superconducting film in which an a-axis is oriented preferentially relative to the surface of a substrate comprising MgO (100) single crystals, wherein the chemical composition ratio (Sr+Ca+Cu)/Bi of the BiSrCaCuO system superconducting film is made not less than 3.5. A Bi-Sr-Ca-Cu-O system superconducting thin film formed on a substrate comprising MgO [110] single crystals, in which a (110) face is selectively grown to the substrate surface. The film is formed on the substrate by a chemical vapor deposition process.
摘要翻译:在包含[110]具有钙钛矿结构的ABO 3型氧化物的单晶的衬底上形成的Bi-Sr-Ca-Cu-O系超导薄膜,其中(119)面相对于衬底表面选择性地生长。 该薄膜通过化学气相沉积工艺在基板上形成。 制造BiSrCaCuO系超导膜的方法,其中a轴相对于包含MgO(100)单晶的衬底的表面优先取向,其中BiSrCaCuO的化学组成比(Sr + Ca + Cu)/ Bi 系统超导薄膜不低于3.5。 在包含MgO [110]单晶的基板上形成的Bi-Sr-Ca-Cu-O系超导薄膜,其中(110)面选择性地生长到基板表面。 通过化学气相沉积工艺在基板上形成膜。
摘要:
Provided is an oxide superconducting wire material, wherein pinning of magnetic flux, under an environment in which magnetic field is applied, can be conducted efficiently towards any magnetic-field applying angle direction, to secure a high superconductive property. The oxide superconducting wire material (100) is provided with a metal substrate (110), an intermediate layer (120) formed upon the metal substrate (110), and a REBaCuO-system superconductive layer (140) formed upon the intermediate layer (120). RE comprises one or more elements selected from Y, Nd, Sm, Eu, Gd, and Ho. Oxide particles including Zr are distributed within the superconductive layer (140) as magnetic-flux pinning points (145), and the mole ratio (y) of Ba included within the superconductive layer (140) is, when the mole ratio of Zr is assumed to be x, within a range of (1.2+ax)≦y≦(1.8+ax), wherein 0.5≦a≦2.
摘要翻译:提供了一种氧化物超导线材,其中在施加磁场的环境下磁通的钉扎可以有效地向任何磁场施加角度方向传导,以确保高的超导性能。 氧化物超导线材(100)设置有金属基板(110),形成在金属基板(110)上的中间层(120)和形成在中间层(120)上的REBaCuO系超导层(140) )。 RE包括选自Y,Nd,Sm,Eu,Gd和Ho中的一种或多种元素。 包含Zr的氧化物粒子作为磁通钉扎点(145)分布在超导层(140)内,并且当考虑Zr的摩尔比时,超导层(140)中包含的Ba的摩尔比(y)为 在(1.2 + ax)@ y @(1.8 + ax)的范围内为x,其中0.5 @ a @ 2。
摘要:
A superconducting wire having at least a superconducting thin film and a stabilizing film formed one on top of another in order on a substrate having a predetermined width and a predetermined length, the superconducting wire having at least one cut made along a direction of the length of the superconducting wire, the superconducting wire being bendable at the cut in a width direction.
摘要:
Problem: To provide an REBCO superconductor which has electromagnetic properties of an extremely small magnetization in a DC magnetic field or an extremely small pinning loss in a fluctuating magnetic field and thereby enable production of a REBCO superconducting wire with an extremely small magnetization and pinning loss.Solution to Problem: A RE1Ba2Cu3O7-z superconductor characterized by having a magnetization-zero-region on its magnetization curve, wherein in the magnetization-zero-region a rate of change of magnetization remains at about zero near zero magnetization, the magnetization curve is formed when an external magnetic field turns from an increase to a decrease or from a decrease to an increase, and RE is one or more of Y, Gd, Nd, Sm, Eu, Yb, Pr, and Ho.
摘要:
A metal substrate for an oxide superconducting wire, which comprises a polycrystalline metal substrate with a rolled aggregate structure having a {100} plane which is parallel to the rolled surface and a axis which is parallel to the rolling direction, and an oxide crystal layer comprising an oxide of the polycrystalline metal and formed on a surface of the polycrystalline metal substrate, wherein at least 90% of grain boundaries in the oxide crystal layer have an inclination of 10° or less, and at least 90% of the {100} plane of the oxide crystal layer make an angle of 10° or less with the surface of the polycrystalline metal substrate.
摘要:
In order to stably retain an oxide-based melt consisting essentially of yttrium or a lanthanoid element, barium, copper and oxygen at a prescribed temperature with no impurity contamination thereby preparing a large oxide crystal of high quality from the melt, an oxide melt consisting essentially of yttrium or a lanthanoid element, barium, copper and oxygen is stored in a first crucible, which in turn is held in a second crucible. The first crucible is made of a material which is an oxide of at least one element forming the melt having a melting point higher by at least 10.degree. C. than a melt retention temperature and causing no structural phase transition up to a temperature higher by 10.degree. C. than the aforementioned prescribed temperature, with solubility of not more than 5 atomic percent with respect to the melt in a temperature range from the room temperature to a temperature higher by 10.degree. C. than the melt retention temperature. The second crucible is made of a material substantially causing neither melting nor chemical reaction with respect to the oxide-based melt, which can retain the melt more stably than the first material. Even if the melt overflows the first crucible, this overflow is suppressed by the second crucible. It is possible to prepare a crystal of an oxide superconductor such as YBa.sub.2 Cu.sub.3 O.sub.7-x (0.ltoreq.X.ltoreq.1) by the pulling method from the melt which is stored in the first crucible.
摘要:
A composite material comprising a bulky substrate of a Y-series 123 metal oxide crystal, and at least one layer provided on a surface of the substrate and formed of a crystal of a Y-series 123 metal oxide. The substrate may be produced by immersing a seed material in a liquid phase which comprises components constituting the metal oxide. The liquid phase contains a solid phase located at a position different from the position at which the seed material contacts the liquid phase. The solid phase provides the liquid phase with solutes which constitute the Y-series 123 metal oxide so that the solutes are transported to the position at which the seed material and the liquid phase contact, thereby permitting the Y-series 123 metal oxide to grow on the seed material as primary crystals and to obtain the bulky substrate. The layer of a Y-series 123 metal oxide may be formed on the substrate by a sputtering method, a vacuum deposition method, a laser abrasion method, a CVD method or a liquid phase epitaxy method.
摘要:
Provided is a substrate for superconductive film formation, which includes a metal substrate, and an oxide layer formed directly on the metal substrate, containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm. A method of manufacturing a substrate for superconductive film formation, which includes forming an oxide layer directly on a metal substrate, the oxide layer containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm.
摘要:
A RE-type oxide superconducting wire having excellent angular dependence for magnetic field of Jc is obtained by finely dispersing magnetic flux pinning centers into a superconductor. A mixed solution which comprises a metal-organic complex solution including a metal element which composes a RE-type oxide superconductor whose Ba content is reduced and a metal-organic complex solution including at least one or more kinds of metals which are selected from Zr, Ce, Sn, or Ti which has a larger affinity for Ba is coated onto an intermediate layer of a composite substrate, and the assembly is then calcined to disperse artificially and finely oxide particles (magnetic flux pinning centers) including Zr. Thus, the angular dependence for magnetic field (Jc,min/Jc,max) of Jc can be remarkably improved.