摘要:
A method of manufacturing MOS transistor includes providing a substrate having a gate formed thereon; forming a hard mask layer on the substrate, performing an acid treatment to a surface of the hard mask layer, forming a photoresist layer on the hard mask layer after performing the acid treatment, performing a photolithography process to pattern the photoresist layer and the hard mask layer, performing an etching process to form recesses in the substrate, and performing a SEG method to form epitaxial layers respectively in the recesses.
摘要:
A method of fabricating an epitaxial layer includes providing a substrate. The substrate is etched to form at least a recess within the substrate. A surface treatment is performed on the recess to form a Si—OH containing surface. An in-situ epitaxial process is performed to form an epitaxial layer within the recess, wherein the epitaxial process is performed in a hydrogen-free atmosphere and at a temperature lower than 800° C.
摘要:
A method of fabricating an epitaxial layer includes providing a substrate. The substrate is etched to form at least a recess within the substrate. A surface treatment is performed on the recess to form a Si—OH containing surface. An in-situ epitaxial process is performed to form an epitaxial layer within the recess, wherein the epitaxial process is performed in a hydrogen-free atmosphere and at a temperature lower than 800° C.
摘要:
The method of forming a polysilicon layer is provided. A first polysilicon layer with a first grain size is formed on a substrate. A second polysilicon layer with a second grain size is formed on the first polysilicon layer. The first grain size is smaller than the second grain size. The first polysilicon layer with a smaller grain size can serve as a base for the following deposition, so that the second polysilicon layer formed thereon has a flatter topography, and thus, the surface roughness is reduced and the Rs uniformity within a wafer is improved.
摘要:
An optical critical dimension measuring method, applicable in measuring a pattern, that includes a plurality of polysilicon layers, of a device, is provided. The method includes obtaining a real curve corresponding to the to-be-measured device. Then, determining whether an ion implantation process has been performed on the polysilicon layers, a different module is selected. A correlation process is performed according to the selected module to generate a theoretical curve that correlates with the real curve to obtain a plurality of parameters corresponding to the theoretical curve.
摘要:
A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.
摘要:
A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.
摘要:
A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.
摘要:
A metal gate structure includes a high dielectric constant (high-K) gate dielectric layer, a metal gate having at least a U-shaped work function metal layer positioned on the high-K gate dielectric layer, and a silicon carbonitride (SiCN) seal layer positioned on sidewalls of the high-K gate dielectric layer and of the metal gate.
摘要:
A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.