Abstract:
A transistor structure including a substrate, a transistor device, a split buried layer, and a second buried layer is provided. The substrate has a device region. The transistor device is located in the device region. The split buried layer is located under the transistor device in the substrate and includes first buried layers separated from each other. The second buried layer is located under the split buried layer in the substrate and connects the first buried layers. The second buried layer and the split buried layer have a first conductive type. The transistor structure may have a higher breakdown voltage.
Abstract:
A manufacturing method for a shallow trench isolation. First, a substrate is provided, a hard mask layer and a patterned photoresist layer are sequentially formed on the substrate, at least one trench is then formed in the substrate through an etching process, the hard mask layer is removed. Afterwards, a filler is formed at least in the trench and a planarization process is then performed on the filler. Since the planarization process is performed only on the filler, so the dishing phenomenon can effectively be avoided.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the resistor region of the substrate; forming a tank in the STI; and forming a resistor in the tank and on two sides of the top surface of the STI outside the tank.
Abstract:
A method of forming a semiconductor device is disclosed. A gate structure is formed on a substrate. The gate structure includes a dummy gate and a spacer at a sidewall of the dummy gate. A dielectric layer is formed on the substrate outside of the gate structure. A metal hard mask layer is formed to cover tops of the dielectric layer and the spacer and to expose a surface of the gate structure. The dummy gate is removed to form a gate trench. A low-resistivity metal layer is formed on the metal hard mask layer filling in the gate trench. The low-resistivity metal layer outside of the gate trench is removed. The metal hard mask layer is removed.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a transistor region and a resistor region; forming a shallow trench isolation (STI) on the resistor region of the substrate; forming a tank in the STI; and forming a resistor in the tank and on two sides of the top surface of the STI outside the tank.
Abstract:
A semiconductor device having a metal gate includes a substrate having a plurality of shallow trench isolations (STIs) formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the substrate.
Abstract:
A transistor structure including a substrate, a transistor device, a split buried layer, and a second buried layer is provided. The substrate has a device region. The transistor device is located in the device region. The split buried layer is located under the transistor device in the substrate and includes first buried layers separated from each other. The second buried layer is located under the split buried layer in the substrate and connects the first buried layers. The second buried layer and the split buried layer have a first conductive type. The transistor structure may have a higher breakdown voltage.
Abstract:
A manufacturing method for a shallow trench isolation. First, a substrate is provided, a hard mask layer and a patterned photoresist layer are sequentially formed on the substrate, at least one trench is then formed in the substrate through an etching process, the hard mask layer is removed. Afterwards, a filler is formed at least in the trench and a planarization process is then performed on the filler. Since the planarization process is performed only on the filler, so the dishing phenomenon can effectively be avoided.