Abstract:
A method for improving wafer surface uniformity is disclosed. A wafer including a first region and a second region is provided. The first region and the second region have different pattern densities. A conductive layer is formed on the wafer. A buffer layer is then formed on the conductive layer. The buffer layer is polished until the conductive layer is exposed. A portion of the conductive layer and the remaining buffer layer are etched away.
Abstract:
A planarization method is provided and includes the following steps. A substrate having a main surface is provided. A protruding structure is formed on the main surface. An insulating layer is formed conformally covering the main surface and the top surface and the sidewall of the protruding structure. A stop layer is formed on the insulating layer and at least covers the top surface of the protruding structure. A first dielectric layer is formed blanketly covering the substrate and the protruding structure and a chemical mechanical polishing process is then performed to remove a portion of the first dielectric layer until a portion of the stop layer is exposed thereby obtaining an upper surface. A second dielectric layer having a pre-determined thickness is formed covering the upper surface.
Abstract:
A method for forming a semiconductor structure includes following steps. A substrate is provided, and a semiconductor layer is formed on the substrate. Next, a SiN-rich pre-oxide layer is formed on the semiconductor layer. After forming the SiN-rich pre-oxide layer, an anneal treatment is performed to partially transfer the SiN-rich pre-oxide layer to form a SiN layer and a SiO layer. And the SiO layer is formed the on the SiN layer. Subsequently, a planarization process is performed to remove a portion of the SiO layer to expose the SiN layer.
Abstract:
A method for planarizing a silicon layer includes providing a silicon layer having at least one recess therein. Next, a photoresist layer is formed to cover the silicon layer and fill up the recess. Then, the photoresist layer is hardened. After that, part of the photoresist layer is removed by taking a top surface of the silicon layer as a stop layer. Finally the photoresist layer and the silicon layer are etched back simultaneously to remove the photoresist layer entirely.
Abstract:
A semiconductor process includes the following steps. A dielectric layer is formed on a substrate, where the dielectric layer has at least a dishing from a first top surface. A shrinkable layer is formed to cover the dielectric layer, where the shrinkable layer has a second top surface. A treatment process is performed to shrink a part of the shrinkable layer according to a topography of the second top surface, thereby flattening the second top surface. A semiconductor structure formed by said semiconductor process is also provided.
Abstract:
A method for manufacturing a semiconductor device is provided. A substrate with an insulation formed thereon is provided, wherein the insulation has plural trenches, and the adjacent trenches are spaced apart from each other. A barrier layer is formed on an upper surface of the insulation and in sidewalls of the trenches, and the barrier layer comprises overhung portions corresponding to the trenches. A seed layer is formed on the barrier layer. Then, an upper portion of the seed layer formed on an upper surface of the barrier layer is removed. An upper portion of the barrier layer is removed for exposing the upper surface of the insulation. Afterwards, the conductors are deposited along the seed layer for filling up the trenches, wherein the top surfaces of the conductors are substantially aligned with the upper surface of the insulation.
Abstract:
A method for manufacturing a semiconductor device is provided. A substrate with an insulation formed thereon is provided, wherein the insulation has plural trenches, and the adjacent trenches are spaced apart from each other. A barrier layer is formed on an upper surface of the insulation and in sidewalls of the trenches, and the barrier layer comprises overhung portions corresponding to the trenches. A seed layer is formed on the barrier layer. Then, an upper portion of the seed layer formed on an upper surface of the barrier layer is removed. An upper portion of the barrier layer is removed for exposing the upper surface of the insulation. Afterwards, the conductors are deposited along the seed layer for filling up the trenches, wherein the top surfaces of the conductors are substantially aligned with the upper surface of the insulation.
Abstract:
A method of fabricating a semiconductor device includes the following steps. A substrate including at least a fin structure is provided, and a material layer is formed to cover the fin structure. Then, a first planarization process is performed on the material layer to form a first material layer, and an oxide layer is formed on the first material layer. Subsequently, the oxide layer is totally removed to expose the first material layer, and a second material layer is formed in-situ on the first material layer after totally removing the oxide layer.
Abstract:
A manufacturing method for a shallow trench isolation. First, a substrate is provided, a hard mask layer and a patterned photoresist layer are sequentially formed on the substrate, at least one trench is then formed in the substrate through an etching process, the hard mask layer is removed. Afterwards, a filler is formed at least in the trench and a planarization process is then performed on the filler. Since the planarization process is performed only on the filler, so the dishing phenomenon can effectively be avoided.
Abstract:
A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.