Abstract:
A semiconductor device includes a substrate having a magnetic random access memory (MRAM) region and a logic region, a first metal interconnection on the MRAM region, a second metal interconnection on the logic region, a stop layer extending from the first metal interconnection to the second metal interconnection, and a magnetic tunneling junction (MTJ) on the first metal interconnection. Preferably, the stop layer on the first metal interconnection and the stop layer on the second metal interconnection have different thicknesses.
Abstract:
A method for fabricating semiconductor device includes the steps of forming an inter-metal dielectric (IMD) layer on a substrate, forming a trench in the IMD layer, forming a synthetic antiferromagnetic (SAF) layer in the trench, forming a metal layer on the SAF layer, planarizing the metal layer and the SAF layer to form a metal interconnection, and forming a magnetic tunneling junction (MTJ) on the metal interconnection.
Abstract:
A magnetoresistive memory cell is provided including a substrate. An inter-layer dielectric layer is disposed on the substrate. A via structure is disposed in the inter-layer dielectric layer. A magnetic pinned layer is disposed on the via structure. A tunnel barrier layer is disposed on the magnetic pinned layer to cover a top and a sidewall of the magnetic pinned layer, wherein the tunnel barrier layer comprises a horizontal extending portion outward from a bottom of the sidewall. A magnetic free layer with a -like structure is disposed on the tunnel barrier layer, wherein the magnetic free layer is isolated from the magnetic pinned layer by the tunnel bather layer. A spacer is disposed on the sidewall of the magnetic free layer. The spacer extends to the inter-layer dielectric layer.
Abstract:
The invention provides a semiconductor structure, which comprises a plurality of metal circuit layers stacked with each other, the multi-layer metal circuit layer comprises an aluminum circuit layer which is located at the position closest to a surface among the plurality of circuit layers, the material of the aluminum circuit layer is made of aluminum, and the aluminum circuit layer comprises a concave portion.
Abstract:
A semiconductor device includes a bottom wafer, a top wafer bonded to the bottom wafer, a first dielectric layer, a second dielectric layer, a deep via conductor structure, and a connection pad. The top wafer includes a first interconnection structure. The first dielectric layer is disposed on the top wafer. The second dielectric layer is disposed on the first dielectric layer. The deep via conductor structure penetrates through the second dielectric layer and the first dielectric layer and is connected with the first interconnection structure. The connection pad is disposed on the second dielectric layer and the deep via conductor structure. A first portion of the second dielectric layer is sandwiched between the connection pad and the first dielectric layer. A second portion of the second dielectric layer is connected with the first portion, and a thickness of the second portion is less than a thickness of the first portion.
Abstract:
A method for fabricating a semiconductor device includes the steps of first bonding a top wafer to a bottom wafer, in which the top wafer has a first metal interconnection including a first barrier layer exposing from a bottom surface of the top wafer. Next, a dielectric layer is formed on the bottom surface of the top wafer and then a second metal interconnection is formed in the dielectric layer and connected to the first metal interconnection, in which the second metal interconnection includes a second barrier layer and the first barrier layer and the second barrier layer include a H-shape altogether.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a magnetic tunneling junction (MTJ) on the first IMD layer; forming a liner on the MTJ and the first IMD layer; removing part of the liner to form a spacer adjacent to the MTJ; and forming a second IMD layer on the first IMD layer.
Abstract:
A fin type ESD protection device includes at least one first fin, at least one second fin, and at least one gate structure. The first fin is disposed on a semiconductor substrate, and a source contact contacts the first fin. The second fin is disposed on the semiconductor substrate, and a drain contact contacts the second fin. The first fin and the second fin extend in a first direction respectively, and the first fin is separated from the second fin. The gate structure is disposed between the source contact and the drain contact. The first fin is separated from the drain contact, and the second fin is separated from the source contact.
Abstract:
A semiconductor structure suitable for ESD protection application is provided. The semiconductor structure includes a first well, a second well, a third well, a first fin, a second fin, an anode, a cathode and a first doping region. The first well and the second well are disposed in the third well. The first fin is disposed on the first well. The second fin is disposed on the second well. The anode is disposed on the first fin. The cathode is disposed on the second fin. The first doping region is disposed under the first fin, and separates the first fin from the first well. The first well, the second well, the first fin and the second fin have a first doping type. The third well and the first doping region have a second doping type.
Abstract:
A semiconductor structure includes an electrode element with an upper surface. The upper surface includes at least one convex curved portion.