摘要:
The present disclosure relates to the deposition of conductive titanium oxide films by atomic layer deposition processes. Amorphous doped titanium oxide films are deposited by ALD processes comprising titanium oxide deposition cycles and dopant oxide deposition cycles and are subsequently annealed to produce a conductive crystalline anatase film. Doped titanium oxide films may also be deposited by first depositing a doped titanium nitride thin film by ALD processes comprising titanium nitride deposition cycles and dopant nitride deposition cycles and subsequently oxidizing the nitride film to form a doped titanium oxide film. The doped titanium oxide films may be used, for example, in capacitor structures.
摘要:
Methods for controllably forming Sb—Te, Ge—Te, and Ge—Sb—Te thin films are provided. ALD processes can be used to deposit a first film comprising ZnTe. Providing an antimony source chemical, such as SbI3 replaces the zinc, thereby forming Sb2Te3 thin films. Ge—Te and Ge—Sb—Te films can also be made by providing Ge sources to ZnTe and Sb—Te thin films, respectively.
摘要:
The present disclosure relates to the deposition of conductive titanium oxide films by atomic layer deposition processes. Amorphous doped titanium oxide films are deposited by ALD processes comprising titanium oxide deposition cycles and dopant oxide deposition cycles and are subsequently annealed to produce a conductive crystalline anatase film. Doped titanium oxide films may also be deposited by first depositing a doped titanium nitride thin film by ALD processes comprising titanium nitride deposition cycles and dopant nitride deposition cycles and subsequently oxidizing the nitride film to form a doped titanium oxide film. The doped titanium oxide films may be used, for example, in capacitor structures.
摘要:
Methods for controllably forming Sb—Te, Ge—Te, and Ge—Sb—Te thin films are provided. ALD processes can be used to deposit a first film comprising ZnTe. Providing an antimony source chemical, such as SbI3 replaces the zinc, thereby forming Sb2Te3 thin films. Ge—Te and Ge—Sb—Te films can also be made by providing Ge sources to ZnTe and Sb—Te thin films, respectively.
摘要:
Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
摘要:
Atomic layer deposition (ALD) processes for forming Te-containing thin films, such as Sb—Te, Ge—Te, Ge—Sb—Te, Bi—Te, and Zn—Te thin films are provided. ALD processes are also provided for forming Se-containing thin films, such as Sb—Se, Ge—Se, Ge—Sb—Se, Bi—Se, and Zn—Se thin films are also provided. Te and Se precursors of the formula (Te,Se)(SiR1R2R3)2 are preferably used, wherein R1, R2, and R3 are alkyl groups. Methods are also provided for synthesizing these Te and Se precursors. Methods are also provided for using the Te and Se thin films in phase change memory devices.
摘要翻译:提供了用于形成诸如Sb-Te,Ge-Te,Ge-Sb-Te,Bi-Te和Zn-Te薄膜的Te含量薄膜的原子层沉积(ALD)工艺。 还提供了用于形成含Se的薄膜的ALD工艺,例如Sb-Se,Ge-Se,Ge-Sb-Se,Bi-Se和Zn-Se薄膜。 优选使用式(Te,Se)(SiR 1 R 2 R 3)2的Te和Se前体,其中R 1,R 2和R 3是烷基。 还提供了用于合成这些Te和Se前体的方法。 还提供了在相变存储器件中使用Te和Se薄膜的方法。
摘要:
Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
摘要:
The present invention concerns a process for depositing rare earth oxide thin films, especially yttrium, lanthanum and gadolinium oxide thin films by an ALD process, according to which invention the source chemicals are cyclopentadienyl compounds or rare earth metals, especially those of yttrium, lanthanum and gadolinium. Suitable deposition temperatures for yttrium oxide are between 200 and 400° C. when the deposition pressure is between 1 and 50 mbar. Most suitable deposition temperatures for lanthanum oxide are between 160 and 165° C. when the deposition pressure is between 1 and 50 mbar.
摘要:
A method is provided for growing thin oxide films on the surface of a substrate by alternatively reacting the surface of the substrate with a metal source material and an oxygen source material. The oxygen source material is preferably a metal alkoxide. The metal source material may be a metal halide, hydride, alkoxide, alkyl, a cyclopentadienyl compound, or a diketonate.
摘要:
Atomic layer deposition (ALD) type processes for producing titanium containing oxide thin films comprise feeding into a reaction space vapor phase pulses of titanium alkoxide as a titanium source material and at least one oxygen source material, such as ozone, capable of forming an oxide with the titanium source material. In preferred embodiments the titanium alkoxide is titanium methoxide.