摘要:
The present invention concerns a process for depositing rare earth oxide thin films, especially yttrium, lanthanum and gadolinium oxide thin films by an ALD process, according to which invention the source chemicals are cyclopentadienyl compounds or rare earth metals, especially those of yttrium, lanthanum and gadolinium. Suitable deposition temperatures for yttrium oxide are between 200 and 400° C. when the deposition pressure is between 1 and 50 mbar. Most suitable deposition temperatures for lanthanum oxide are between 160 and 165° C. when the deposition pressure is between 1 and 50 mbar.
摘要:
The present invention concerns a process for depositing rare earth oxide thin films, especially yttrium, lanthanum and gadolinium oxide thin films by an ALD process, according to which invention the source chemicals are cyclopentadienyl compounds or rare earth metals, especially those of yttrium, lanthanum and gadolinium. Suitable deposition temperatures for yttrium oxide are between 200 and 400° C. when the deposition pressure is between 1 and 50 mbar. Most suitable deposition temperatures for lanthanum oxide are between 160 and 165° C. when the deposition pressure is between 1 and 50 mbar.
摘要:
The present invention concerns a process for depositing rare earth oxide thin films, especially yttrium, lanthanum and gadolinium oxide thin films by an ALD process, according to which invention the source chemicals are cyclopentadienyl compounds of rare earth metals, especially those of yttrium, lanthanum and gadolinium. Suitable deposition temperatures for yttrium oxide are between 200 and 400° C. when the deposition pressure is between 1 and 50 mbar. Most suitable deposition temperatures for lanthanum oxide are between 160 and 165° C. when the deposition pressure is between 1 and 50 mbar.
摘要:
A multilayer coating and a method for fabricating a multilayer coating on a substrate (3). The coating is arranged to minimize diffusion of atoms through the coating, the method comprising the steps of introducing a substrate (3) to a reaction space, depositing a layer of first material (1) on the substrate (3), and depositing a layer of second material (2) on the layer of first material (1). Depositing the layer of first material (1) and the layer of second material (2) comprises alternately introducing precursors into the reaction space and subsequently purging the reaction space after each introduction of a precursor. The first material being selected from the group of titanium oxide and aluminum oxide, the second material being the other from the group of titanium oxide and aluminum oxide. An interfacial region is formed in between titanium oxide and aluminum oxide.a.
摘要:
The present invention discloses a method for the formation of lithium comprising layer on a substrate using an atomic layer deposition method. The method comprises the sequential pulsing of a lithium precursor through a reaction chamber for deposition upon a substrate. Using further oxidising pulses and or other metal containing precursor pulses, an electrolyte suitable for use in thin film batteries may be manufactured.
摘要:
This invention concerns a process for producing oxide thin film on a substrate by an ALD type process. According to the process, alternating vapour-phase pulses of at least one metal source material, and at least one oxygen source material are fed into a reaction space and contacted with the substrate. According to the invention, an yttrium source material and a zirconium source material are alternately used as the metal source material so as to form an yttrium-stabilised zirconium oxide (YSZ) thin film on a substrate.
摘要:
A strengthened structural module (2) and a method for fabricating a strengthened structural module (2). The module comprises an essentially planar glass substrate (1), an essentially planar second substrate (3), and at least one spacer element (5) in between the glass substrate (1) and the second substrate (3). The at least one spacer element (5) keeps the glass substrate (1) and the second substrate (3) separated from each other from the edges of the two substrates and defines a space (7) in between the two substrates in the inside of the module. The module comprises a coating (9) surrounding the module around the outside of the module. The coating (9) is arranged conformally on the surfaces facing the outside of the module, for increasing the strength of the module.
摘要:
A method for increasing the durability of glass by a coating, according to the present invention comprises the step of coating glass with a coating comprising at least one layer whose thickness is below 5 nanometers, wherein the coating comprises a compound of at least one element.
摘要:
A method for increasing the durability of glass (1) by a coating, according to the present invention comprises the step of coating glass (1) with a coating comprising at least one layer (4, 5, 6) whose thickness is below 5 nanometres, wherein the coating comprises a compound of at least one element. A glass product comprising a coating, according to the present invention is fabricated by coating glass (1) with a coating comprising at least one layer (4, 5, 6) whose thickness is below 5 nanometres. A glass product comprising a coating, according to the present invention comprises surface scratches (2) with a width at the level of the glass (1) surface of below 50 nanometres, the coating residing essentially conformally on the inside of the surface scratches (2) to increase the durability of the glass (1).
摘要:
This invention concerns a process for producing oxide thin film on a substrate by an ALD type process. According to the process, alternating vapor-phase pulses of at least one metal source material, and at least one oxygen source material are fed into a reaction space and contacted with the substrate. According to the invention, an yttrium source material and a zirconium source material are alternately used as the metal source material so as to form an yttrium-stabilized zirconium oxide (YSZ) thin film on a substrate.