摘要:
Methods and apparatus for fabricating a semiconductor die including several target structures. A first layer is formed that includes one or more line or trench structures that extend in a first direction. A second layer is formed that includes one or more line or trench structures that extend in a second direction that is perpendicular to the first structure, such that a projection of the target structure along the first direction is independent of the second direction and a projection of the target structure along the second direction is independent of the first direction. A target structure and a method for generating a calibration curve are also described.
摘要:
Methods and apparatus for fabricating a semiconductor die including several target structures. A first layer is formed that includes one or more line or trench structures that extend in a first direction. A second layer is formed that includes one or more line or trench structures that extend in a second direction that is perpendicular to the first structure, such that a projection of the target structure along the first direction is independent of the second direction and a projection of the target structure along the second direction is independent of the first direction. A target structure and a method for generating a calibration curve are also described.
摘要:
Disclosed are apparatus and methods for measuring a characteristic, such as overlay, of a semiconductor target. In general, order-selected imaging and/or illumination is performed while collecting an image from a target using a metrology system. In one implementation, tunable spatial modulation is provided only in the imaging path of the system. In other implementations, tunable spatial modulation is provided in both the illumination and imaging paths of the system. In a specific implementation, tunable spatial modulation is used to image side-by-side gratings with diffraction orders ±n. The side-by-side gratings may be in different layers or the same layer of a semiconductor wafer. The overlay between the structures is typically found by measuring the distance between centers symmetry of the gratings. In this embodiment, only orders ±n for a given choice of n (where n is an integer and not equal to zero) are selected, and the gratings are only imaged with these diffraction orders.
摘要:
A resultant image of a grating target may be obtained by dividing an image of the target into first and second portions and optically modifying the first and/or second portion such that a final image formed from their combination is characterized by a Moiré pattern. The resultant image may be analyzed to determine a shift in the grating target from a shift in the Moiré pattern. Optical alignment apparatus may include a first beam splitter, an image transformation element optically coupled to the first beam splitter, and a second beam splitter. The first beam splitter divides an image of a grating target into first and second portions. The second beam splitter combines the first portion and the second portion. The image transformation element optically modifies the first and/or second portion such that a final image formed from their combination is characterized by a Moiré pattern.
摘要:
A resultant image of a grating target may be obtained by dividing an image of the target into first and second portions and optically modifying the first and/or second portion such that a final image formed from their combination is characterized by a Moiré pattern. The resultant image may be analyzed to determine a shift in the grating target from a shift in the Moiré pattern. Optical alignment apparatus may include a first beam splitter, an image transformation element optically coupled to the first beam splitter, and a second beam splitter. The first beam splitter divides an image of a grating target into first and second portions. The second beam splitter combines the first portion and the second portion. The image transformation element optically modifies the first and/or second portion such that a final image formed from their combination is characterized by a Moiré pattern.
摘要:
The present invention may include acquiring a plurality of overlay metrology measurement signals from a plurality of metrology targets distributed across one or more fields of a wafer of a lot of wafers, determining a plurality of overlay estimates for each of the plurality of overlay metrology measurement signals using a plurality of overlay algorithms, generating a plurality of overlay estimate distributions, and generating a first plurality of quality metrics utilizing the generated plurality of overlay estimate distributions, wherein each quality metric corresponds with one overlay estimate distribution of the generated plurality of overlay estimate distributions, each quality metric a function of a width of a corresponding generated overlay estimate distribution, each quality metric further being a function of asymmetry present in an overlay metrology measurement signal from an associated metrology target.
摘要:
A method for determining an overlay offset may include, but is not limited to: obtaining a first anti-symmetric differential signal (ΔS1) associated with a first scatterometry cell; obtaining a second anti-symmetric differential signal (ΔS2) associated with a second scatterometry cell and computing an overlay offset from the first anti-symmetric differential (ΔS1) signal associated with the first scatterometry cell and the second anti-symmetric differential signal (ΔS2) associated with the second scatterometry cell.
摘要:
The present invention may include measuring a first phase distribution across a pupil plane of a portion of illumination reflected from a first overlay target of a semiconductor wafer, wherein the first overlay target is fabricated to have a first intentional overlay, measuring a second phase distribution across the pupil plane of a portion of illumination reflected from a second overlay target, wherein the second overlay target is fabricated to have a second intentional overlay in a direction opposite to and having the same magnitude as the first intentional overlay, determining a first phase tilt associated with a sum of the first and second phase distributions, determining a second phase tilt associated with a difference between the first and second phase distributions, calibrating a set of phase tilt data, and determining a test overlay value associated with the first and second overlay target.
摘要:
A multi-layer overlay target for use in imaging based metrology is disclosed. The overlay target includes a plurality of target structures including three or more target structures, each target structure including a set of two or more pattern elements, wherein the target structures are configured to share a common center of symmetry upon alignment of the target structures, each target structure being invariant to N degree rotation about the common center of symmetry, wherein N is equal to or greater than 180 degrees, wherein each of the two or more pattern elements has an individual center of symmetry, wherein each of the two or more pattern elements of each target structure is invariant to M degree rotation about the individual center of symmetry, wherein M is equal to or greater than 180 degrees.