Abstract:
Methods for decellularizing organs and tissues in vitro and in vivo are provided, as are methods of maintaining organ and tissue frameworks and methods of recellularizing organs and tissues, thereby providing an approach to needed organs or tissues.
Abstract:
Provided herein is an endothelial scaffold comprising, consisting of, or consisting essentially of decellularized corneal stroma. In some embodiments, the scaffold has cultured endothelial cells seeded thereon. Methods of treating a patient in need of corneal endothelial transplant are also provided, including implanting the scaffold as described herein onto a cornea of the patient (e.g., by deep keratectomy).
Abstract:
An in vitro liver organoid is provided along with methods of making and using the organoid. A cell culture system that includes the liver organoid is also provided. The liver organoid has fetal liver characteristics and supports expansion and differentiation of hematopoietic stem cells.
Abstract:
An in vitro liver organoid is provided along with methods of making and using the organoid. The liver organoid can be manipulated to have either immature or mature characteristics. Some manipulations generate a liver organoid that supports expansion and/or differentiation of hematopoietic stem cells.
Abstract:
The invention provides a corneal endothelial composition comprising a transparent hydrogel scaffold and a single layer of cultured corneal endothelial cells on the surface of the scaffold. The hydrogel scaffold I comprised of at least one biopolymer, preferably gelatin. Also provided are methods of making a corneal endothelial scaffold
Abstract:
Provided herein is an endothelial scaffold comprising, consisting of, or consisting essentially of decellularized corneal stroma. In some embodiments, the scaffold has cultured endothelial cells seeded thereon. Methods of treating a patient in need of corneal endothelial transplant are also provided, including implanting the scaffold as described herein onto a cornea of the patient (e.g., by deep keratectomy).
Abstract:
The invention provides a corneal endothelial composition comprising a transparent hydrogel scaffold and a single layer of cultured corneal endothelial cells on the surface of the scaffold. The hydrogel scaffold I comprised of at least one biopolymer, preferably gelatin. Also provided are methods of making a corneal endothelial scaffold.
Abstract:
The present invention concerns methods of screening cells for differentiation or de-differentiation, and/or for status as a pluripotent or multipotent (e.g., “stem”) cell, by detecting the differential expression (e.g., upregulation, downregulation) of genes.
Abstract:
Methods for decellularizing organs and tissues in vitro and in vivo are provided, as are methods of maintaining organ and tissue frameworks and methods of recellularizing organs and tissues, thereby providing an approach to needed organs or tissues.
Abstract:
An extrudable hydrogel composition useful for making a three-dimensional organ construct includes a cross-linkable prepolymer, a post-deposition crosslinking group, optionally, an initiator that catalyzes the reaction between the prepolymer and said the crosslinking group; live cells (e.g., plant, animal, or microbial cells), optionally at least one growth factor, and optionally water to balance. Methods of using the same and products so made are also described.