摘要:
A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.
摘要:
A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.
摘要:
A clock signal distribution system is disclosed for providing synchronous clock signals to a plurality of electronic circuit devices. The system includes a clock signal generator means for providing a single frequency sinusoidal clock signal output and a plurality of electronic circuit devices. A clock signal distribution network including interconnected resonant segments of a transmission line 13 connected to the clock signal of the clock signal generator and to the plurality of electronic circuit devices for providing separate synchronous, phase aligned clock signals to the electronic circuit devices. The transmission line segments have lengths matched to the clock signal frequency wavelengths to eliminate clock signal distribution problems such as skew, jitter and pulse distortions.
摘要:
A structure is described having a plurality of electronic devices with the same or different internal CMOS voltages; an interconnection between two or more of the electronic devices; driver and receiver circuits which provide selectable input/output voltage levels for interfacing with several generations of CMOS technology, thus allowing chips fabricated in such technologies to communicate using a signal voltage range most suitable for each chip; Circuitry for selecting or adjusting the type of receiver circuit used, thus allowing either the use of a differential comparator circuit with an externally supplied reference voltage, or alternatively, the use of an inverter style receiver with an adjustable threshold, the selection being accomplished by setting the external reference to a predetermined voltage; Circuitry for selecting or adjusting the switching threshold of the inverter receiver circuit, which enables the threshold to be set appropriately for a given input signal voltage range.
摘要:
An electronic apparatus is disclosed having: a plurality of electronic devices with the same or different internal voltages; an interconnection between two or more of the plurality of electronic devices; each of said two or more electronic devices has an internal voltage; driver and receiver circuits which send and receive signals at a selectable communication voltage levels for interfacing between said two or more electronic devices, at a common communication voltage which is less than the highest value of said internal voltages of said two or more electronic devices; a circuit for configuring the driver and receiver circuits; and the driver circuit are configured to have a substantially constant output impedance independent of their output voltage.
摘要:
The invention teaches a technique for A C equilibration of the signaling levels and time of 1—>h and h—>1 transitions of CMOS drivers as received at CMOS receivers, so as to improve the rate at which data can be communicated between two CMOS devices. It permits minimization of a switching delay in Double Data Rate Dram memories.
摘要:
A method and apparatus are disclosed for initiating a start-up operation of a system (1′) having a master device (1) and a slave device (14a-14n). The method comprises steps of: A) exercising the slave device (14a-14n) using the master device (1) to determine a temporal range within which temporal relationships of electrical signals need to be set in order to operate the system (1′) without error; B) setting the temporal relationships of the electrical signals so as to be within the determined temporal range; and C) storing a record of the determined temporal range, for subsequent use in operating the system (1′). In one embodiment of the invention, the system (1′) includes a memory control system of a computer system (1″), and the slave device (14a-14n) includes memory devices of the computer system (1″). The method of the invention substantially compensates for any differences in times of arrival for data being transferred from the master device (1) to the slave device (14a-14n), and vice versa, and thus minimizes the possibility of read/write errors being encountered, while increasing the overall processing speed and efficiency of the system (1′).
摘要:
A first circuit and a second circuit are connected by a pumped signal line that conducts a signal having a plurality of states. A dynamic termination circuit is connected to the pumped signal line. The dynamic termination circuit includes a switch responsive to the signal conducted by the pumped signal line such that the dynamic termination circuit is enabled only in response to certain of the plurality of states of the signal. In one embodiment, the switch is a first transistor that is coupled in series with a first impedance between a first reference voltage and an intermediate node. In this embodiment, the dynamic termination circuit further includes a second transistor coupled in series with a second impedance between a second reference voltage and the intermediate node and only first and second inverters that are each coupled between the intermediate node and the control input of a respective one of the first transistor and the second transistor.
摘要:
An electronic device packaging structure is described which contains a lead frame on which the electronic device is disposed. The electronic device has contact locations at one edge thereof. The lead frame has leads which extend under the electronic device and inwardly from the opposite direction. Wires are wire bonded between electronic device contact locations and the beam leads which extend under the electronic device and the ends of the leads which extend inwardly from the opposite direction. Two electronic devices are stacked in at an offset with respect to each to expose contact locations on the surface of each electronic device at an edge of each electronic device to form a stepped surface exposing a plurality of electronic device contact locations. Preferably, the chips are identical and rotated 180.degree. with respect to each other. Some of the leads of the lead frame for the double dense memory extend continuously under the stack to provide signal inputs through bit, address, control, power and ground inputs to the electronic devices. These inputs are common between the adjacent chips. Wires are bonded from contact locations on each chip to common leads. If a lead is common and cannot be mixed with another common lead, for example, a control line, it is located at the center of the lead frame. Other leads are provided which are not common between the two chips, for example chip select lines. Wires are bonded between the contact locations on each chip and at least one of the common leads of the lead frame.
摘要:
A three-dimensional architecture chip includes a base chip including a unit integrated thereon and configured to perform electrical signal operations. An active layer is separately fabricated from the base layer. The active layer includes a component to service the unit of the base chip. The active layer is bonded to the base chip such that the component is aligned in vertical proximity of the unit. An electrical connection connects the unit to the component through vertical layers of at least one of the base chip and the active layer.