摘要:
A process for altering the thermoelectric properties of an electrically conductive material is provided. The process includes providing an electrically conducting material and a substrate. The electrically conducting material is brought into contact with the substrate. A thermal gradient can be applied to the electrically conducting material and a voltage applied to the substrate. In this manner, the electrical conductivity, the thermoelectric power and/or the thermal conductivity of the electrically conductive material can be altered and the figure of merit increased.
摘要:
A process for altering the thermoelectric properties of an electrically conductive material is provided. The process includes providing an electrically conducting material and a substrate. The electrically conducting material is brought into contact with the substrate. A thermal gradient can be applied to the electrically conducting material and a voltage applied to the substrate. In this manner, the electrical conductivity, the thermoelectric power and/or the thermal conductivity of the electrically conductive material can be altered and the figure of merit increased.
摘要:
Embodiments of the present disclosure provide a user interface that enables an administrator to monitor the status of one or more long-running processes executing on a system. According to one or more embodiments, information about the long-running processes is received, analyzed and converted into a single format. This information is then stored in a storage device in the single format. In response to a command request periodically received from a user interface, summary information about the one or more long-running processes is provided to, and displayed on, the user interface. Upon receipt of a user selection of at least a portion of the summary information, the user interface issues a second command request that is similar to the first command request, but includes additional parameters, to retrieve additional information about the selected summary information. Once the additional information is received, the additional information is presented on the user interface.
摘要:
Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized Nanodetector devices are described.
摘要:
The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.
摘要:
Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
摘要:
The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.
摘要:
Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
摘要:
Embodiments of the present disclosure provide a user interface that enables an administrator to monitor the status of one or more long-running processes executing on a system. According to one or more embodiments, information about the long-running processes is received, analyzed and converted into a single format. This information is then stored in a storage device in the single format. In response to a command request periodically received from a user interface, summary information about the one or more long-running processes is provided to, and displayed on, the user interface. Upon receipt of a user selection of at least a portion of the summary information, the user interface issues a second command request that is similar to the first command request, but includes additional parameters, to retrieve additional information about the selected summary information. Once the additional information is received, the additional information is presented on the user interface.
摘要:
The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.