摘要:
Disclosed are compounds, crystal structures, data representations, methods of using, and methods of identifying compounds in relation to DNA methylation and inhibition of methylation. In embodiments, DNA methylation is by DNA-adenine methyltransferases (Dam). In an embodiment, compounds are used to treat a host suspected of infection by a pathogenic organism. In an embodiment, virulence of a pathogenic bacterium is modified by treatment with an agent capable of inhibiting a bacterial Dam enzyme. In an embodiment, compounds and methods are disclosed regarding Dam inhibitors.
摘要:
The present invention relates to novel druggable regions discovered in histone H3 lysine methyltransferase DIM-5, which is a SET domain protein. The present invention further relates to methods of using the druggable regions to screen potential candidate therapeutics for diseases in which the activity of SET domain proteins are implicated, for example, anti-cancer/anti-proliferative agents or anti-fungal agents.
摘要:
A permanent magnet motor has a rotor and a stator. The rotor has a shaft, a rotor core and commutator fixed to the shaft, and rotor windings wound about poles of the rotor core and electrically connected to the commutator. The stator has an axially extending round housing, a ring magnet member fixed to an inner surface of the round housing, an endcap, and at least one pair of brushes in sliding contact with the commutator. A chamber is formed by the housing and the endcap. The commutator is disposed in the chamber. A window lift device incorporating the motor is also provided.
摘要:
The present invention discloses a strained channel field effect transistor and a method for fabricating the same. The field effect transistor comprises a substrate, a source/drain, a gate dielectric layer, and a gate, characterized in that, an “L” shaped composite isolation layer, which envelops a part of a side face of the source/drain adjacent to a channel and the bottom of the source/drain, is arranged between the source/drain and the substrate; the composite isolation layer is divided into two layers, that is, an “L” shaped insulation thin layer contacting directly with the substrate and an “L” shaped high stress layer contacting directly with the source and the drain. The field effect transistor of such a structure improves the mobility of charge carriers by introducing stress into the channel by means of the high stress layer, while fundamentally improving the device structure of the field effect transistor and improving the short channel effect suppressing ability of the device.
摘要:
The present invention discloses a CMOS device of reducing charge sharing effect and a fabrication method thereof. The present invention has an additional isolation for trapping carriers disposed right below an isolation region. the material of the additional isolation region is porous silicon. Since porous silicon is a functional material of spongy structure by electrochemistry anodic oxidizing monocrystalline silicon wafer, there are a large number of microvoids and dangling bonds on the surface layer of the porous silicon. These defects may form defect states in a center of forbidden band of the porous silicon, the defect states may trap carriers so as to cause an increased resistance. And with an increase of density of corrosion current, porosity increases, and defects in the porous silicon increase. The present invention can reduce the charge sharing effect due to heavy ions by using a feature that the defect states in the porous silicon trap carriers, the formation of a shallow trench isolation (STI) region and a isolation region underneath only needs one time photolithography, and the process is simple, so that radioresistance performance of an integrated circuit may be greatly increased.
摘要:
A CMOS device for reducing a radiation-induced charge collection and a method for fabricating the same. In the CMOS device, a heavily doped charge collection-suppressed region is disposed directly under the source region and the drain region. The region has a doping type opposite that of the source region and the drain region, and has a doping concentration not less than that of the source region and the drain region. The charge collection-suppressed region has a lateral part slightly less than or equal to that of the source region and the drain region, and has a lateral range toward to the channel not exceed the edges of the source region and the drain region. The CMOS device may greatly reduce a range of the funnel that appears under the action of a single particle, so that charges collected instantaneously under a force of an electric field may be reduced.
摘要:
A multi-granularity parallel storage system including a plurality of memories, a shift generator, an address increment lookup unit, an address shifter, a row address generator, and a plurality of address adders. The shift generator is configured to generate a shift value. The address increment lookup unit is configured to generate input data for the address shifter. The address shifter is configured to cyclically shift the input data rightward by Shift elements and then output the shifted data. The row address generator is configured to generate a row address RowAddr and input the generated row address RowAddr to the other input terminal of each address adder. Each address adder is configured to perform a non-sign addition of the input data at the two input terminals to obtain a read/write (R/W) address for one of the memories and input the R/W address to an address input terminal of the memory.
摘要:
The embodiments of the present invention provide a Ge-based NMOS device structure and a method for fabricating the same. By using the method, double dielectric layers of germanium oxide (GeO2) and metal oxide are deposited between the source/drain region and the substrate. The present invention not only reduces the electron Schottky barrier height of metal/Ge contact, but also improves the current switching ratio of the Ge-based Schottky and therefore, it will improve the performance of the Ge-based Schottky NMOS transistor. In addition, the fabrication process is very easy and completely compatible with the silicon CMOS process. As compared with conventional fabrication method, the Ge-based NMOS device structure and the fabrication method in the present invention can easily and effectively improve the performance of the Ge-based Schottky NMOS transistor.
摘要:
The embodiments of the present invention provide a Ge-based NMOS device structure and a method for fabricating the same. By using the method, double dielectric layers of germanium oxide (GeO2) and metal oxide are deposited between the source/drain region and the substrate. The present invention not only reduces the electron Schottky barrier height of metal/Ge contact, but also improves the current switching ratio of the Ge-based Schottky and therefore, it will improve the performance of the Ge-based Schottky NMOS transistor. In addition, the fabrication process is very easy and completely compatible with the silicon CMOS process. As compared with conventional fabrication method, the Ge-based NMOS device structure and the fabrication method in the present invention can easily and effectively improve the performance of the Ge-based Schottky NMOS transistor.
摘要:
Disclosed herein is an interface treatment method for germanium-based device, which belongs to the field of manufacturing technologies of ultra large scaled integrated (ULSI) circuits. In the method, the natural oxide layer on the surface of the germanium-based substrate is removed by using a concentrated hydrochloric acid solution having a mass percentage concentration of 15%˜36%, and dangling bonds of the surface are performed a passivation treatment by using a diluted hydrochloric acid solution having a mass percentage concentration of 5%˜10% so as to form a stable passivation layer on the surface. This method makes a good foundation for depositing a high-K (high dielectric constant) gate dielectric on the surface of the germanium-based substrate after cleaning and passivating, enhances quality of the interface between the gate dielectric and the substrate, and improves the electrical performance of germanium-based MOS device.