摘要:
Non-volatile multi-bit memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region. A first insulating layer is over the substrate. A first solid electrolyte cell is over the insulating layer and has a capacitance that is controllable between at least two states and is proximate the source region. A second solid electrolyte cell is over the insulating layer and has a capacitance or resistance that is controllable between at least two states and is proximate the drain region. An insulating element isolates the first solid electrolyte cell from the second solid electrolyte cell. A first anode is electrically coupled to the first solid electrolyte cell. The first solid electrolyte cell is between the anode and the insulating layer. A second anode is electrically coupled to the second solid electrolyte cell. The second solid electrolyte cell is between the anode and the insulating layer. A gate contact layer is over the substrate and between the source region and drain region and in electrical connection with the first anode and the second anode. The gate contact layer is electrically coupled to a voltage source.
摘要:
Non-volatile multi-bit memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region; and a gate stack structure over the substrate and between the source region and drain region. The gate stack structure includes a first solid electrolyte cell and a second solid electrolyte cell. The solid electrolyte cells having a capacitance that is controllable between at least two states. A gate contact layer is electrically coupled to a voltage source. The first solid electrolyte cell and the second solid electrolyte cell separate the gate contact layer from the substrate.
摘要:
Non-volatile memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region. A first insulating layer is over the substrate. A second insulating layer is over the substrate and between the source region and drain region. A solid electrolyte layer is between the first insulating layer and second insulating layer. The solid electrolyte layer has a capacitance that is controllable between at least two states. A first electrode is electrically coupled to a first side of the solid electrolyte layer and is electrically coupled to a voltage source. A second electrode is electrically coupled to a second side of the solid electrolyte layer and is electrically coupled to the voltage source. Multi-bit memory units are also disclosed.
摘要:
A magnetic element having a ferromagnetic pinned layer, a ferromagnetic free layer, a non-magnetic spacer layer therebetween, and a porous non-electrically conducting current confinement layer between the free layer and the pinned layer. The current confinement layer forms an interface either between the free layer and the non-magnetic spacer layer or the pinned layer and the non-magnetic spacer layer.
摘要:
A memory cell that includes a first contact having a first surface and an opposing second surface; a second contact having a first surface and an opposing second surface; a memory material layer having a first surface and an opposing second surface; and a nanoporous layer having a first surface and an opposing second surface, the nanoporous layer including at least one nanopore and dielectric material, the at least one nanopore being substantially filled with a conductive metal, wherein a surface of the nanoporous layer is in contact with a surface of the first contact or the second contact and the second surface of the nanoporous layer is in contact with a surface of the memory material layer.
摘要:
A magnetic element having a ferromagnetic pinned layer, a ferromagnetic free layer, a non-magnetic spacer layer therebetween, and a porous non-electrically conducting current confinement layer between the free layer and the pinned layer. The current confinement layer forms an interface either between the free layer and the non-magnetic spacer layer or the pinned layer and the non-magnetic spacer layer.
摘要:
A magnetic element having a ferromagnetic pinned layer, a ferromagnetic free layer, a non-magnetic spacer layer therebetween, and a porous non-electrically conducting current confinement layer between the free layer and the pinned layer. The current confinement layer forms an interface either between the free layer and the non-magnetic spacer layer or the pinned layer and the non-magnetic spacer layer.
摘要:
A magnetic element having a ferromagnetic pinned layer, a ferromagnetic free layer, a non-magnetic spacer layer therebetween, and a porous non-electrically conducting current confinement layer between the free layer and the pinned layer. The current confinement layer forms an interface either between the free layer and the non-magnetic spacer layer or the pinned layer and the non-magnetic spacer layer.
摘要:
A memory cell that includes a first contact having a first surface and an opposing second surface; a second contact having a first surface and an opposing second surface; a memory material layer having a first surface and an opposing second surface; and a nanoporous layer having a first surface and an opposing second surface, the nanoporous layer including at least one nanopore and dielectric material, the at least one nanopore being substantially filled with a conductive metal, wherein a surface of the nanoporous layer is in contact with a surface of the first contact or the second contact and the second surface of the nanoporous layer is in contact with a surface of the memory material layer.
摘要:
Programmable metallization cells (PMC) that include a first electrode; a solid electrolyte layer including clusters of high ion conductive material dispersed in a low ion conductive material; and a second electrode, wherein either the first electrode or the second electrode is an active electrode, and wherein the solid electrolyte layer is disposed between the first electrode and the second electrode. Methods of forming them are also included herein.