摘要:
A NAND flash memory device includes a lower semiconductor layer and an upper semiconductor layer located over the lower semiconductor layer, a first drain region and a first source region located in the lower semiconductor layer, and a second drain region and a second source region located in the upper semiconductor layer. A first gate structure is located on the lower semiconductor layer, and a second gate structure is located on the upper semiconductor layer. A bit line is located over the upper semiconductor layer, and at least one bit line plug is connected between the bit line and the first drain region, where the at least one bit line plug extends through a drain throughhole located in the upper semiconductor layer.
摘要:
A NAND flash memory device includes a lower semiconductor layer and an upper semiconductor layer located over the lower semiconductor layer, a first drain region and a first source region located in the lower semiconductor layer, and a second drain region and a second source region located in the upper semiconductor layer. A first gate structure is located on the lower semiconductor layer, and a second gate structure is located on the upper semiconductor layer. A bit line is located over the upper semiconductor layer, and at least one bit line plug is connected between the bit line and the first drain region, where the at least one bit line plug extends through a drain throughhole located in the upper semiconductor layer.
摘要:
On embodiment of a contact structure may include a lower insulation layer on a lower substrate, an upper substrate on the lower insulation layer, a groove penetrating the upper substrate to extend into the lower insulation layer, the groove below an interface between the upper substrate and the lower insulation layer, an upper insulation layer in the groove, and a contact plug penetrating the upper insulation layer in the groove to extend into the lower insulation layer.
摘要:
On embodiment of a contact structure may include a lower insulation layer on a lower substrate, an upper substrate on the lower insulation layer, a groove penetrating the upper substrate to extend into the lower insulation layer, the groove below an interface between the upper substrate and the lower insulation layer, an upper insulation layer in the groove, and a contact plug penetrating the upper insulation layer in the groove to extend into the lower insulation layer.
摘要:
On embodiment of a contact structure may include a lower insulation layer on a lower substrate, an upper substrate on the lower insulation layer, a groove penetrating the upper substrate to extend into the lower insulation layer, the groove below an interface between the upper substrate and the lower insulation layer, an upper insulation layer in the groove, and a contact plug penetrating the upper insulation layer in the groove to extend into the lower insulation layer.
摘要:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
摘要:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
摘要:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
摘要:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
摘要:
A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.