摘要:
On embodiment of a contact structure may include a lower insulation layer on a lower substrate, an upper substrate on the lower insulation layer, a groove penetrating the upper substrate to extend into the lower insulation layer, the groove below an interface between the upper substrate and the lower insulation layer, an upper insulation layer in the groove, and a contact plug penetrating the upper insulation layer in the groove to extend into the lower insulation layer.
摘要:
On embodiment of a contact structure may include a lower insulation layer on a lower substrate, an upper substrate on the lower insulation layer, a groove penetrating the upper substrate to extend into the lower insulation layer, the groove below an interface between the upper substrate and the lower insulation layer, an upper insulation layer in the groove, and a contact plug penetrating the upper insulation layer in the groove to extend into the lower insulation layer.
摘要:
On embodiment of a contact structure may include a lower insulation layer on a lower substrate, an upper substrate on the lower insulation layer, a groove penetrating the upper substrate to extend into the lower insulation layer, the groove below an interface between the upper substrate and the lower insulation layer, an upper insulation layer in the groove, and a contact plug penetrating the upper insulation layer in the groove to extend into the lower insulation layer.
摘要:
Disclosed are a flash memory device and method of operation. The flash memory device includes a bottom memory cell array and a top memory cell array disposed over the bottom memory cell array. The bottom memory cell array includes a bottom semiconductor layer, a bottom well, and a plurality of bottom memory cell units. The top memory cell array includes a top semiconductor layer, a top well, and a plurality of top memory cell units. A well bias line is disposed over the top memory cell array and includes a bottom well bias line and a top well bias line, The bottom well bias line is electrically connected to the bottom well, and the top well bias line is electrically connected to the top well.
摘要:
In multiple-layered memory devices, memory systems employing the same, and methods of forming such devices, a second memory device layer on a first memory device layer comprises a second substrate including a second memory cell region. The second substrate includes only a single well in the second memory cell region, the single well of the second memory cell region comprising a semiconducting material doped with impurity of one of a first type and second type. The single well defines an active region in the second memory cell region of the second substrate. Multiple second cell strings are arranged on the second substrate in the second active region. Although the second memory cell region includes only a single well, during a programming or erase operation of the memory cells of the second layer, requiring a high voltage to be applied to the single well in the substrate of the second layer, the high voltage will not interfere with the operation of the peripheral transistors of the first layer, second layer, or other layers, since they are isolated from each other. As a result, the substrate of the second layer can be prepared to have a thinner profile, and with fewer processing steps, resulting in devices with higher-density, greater reliability, and reduced fabrication costs.
摘要:
In multiple-layered memory devices, memory systems employing the same, and methods of forming such devices, a second memory device layer on a first memory device layer comprises a second substrate including a second memory cell region. The second substrate includes only a single well in the second memory cell region, the single well of the second memory cell region comprising a semiconducting material doped with impurity of one of a first type and second type. The single well defines an active region in the second memory cell region of the second substrate. Multiple second cell strings are arranged on the second substrate in the second active region. Although the second memory cell region includes only a single well, during a programming or erase operation of the memory cells of the second layer, requiring a high voltage to be applied to the single well in the substrate of the second layer, the high voltage will not interfere with the operation of the peripheral transistors of the first layer, second layer, or other layers, since they are isolated from each other. As a result, the substrate of the second layer can be prepared to have a thinner profile, and with fewer processing steps, resulting in devices with higher-density, greater reliability, and reduced fabrication costs.
摘要:
In multiple-layered memory devices, memory systems employing the same, and methods of forming such devices, a second memory device layer on a first memory device layer comprises a second substrate including a second memory cell region. The second substrate includes only a single well in the second memory cell region, the single well of the second memory cell region comprising a semiconducting material doped with impurity of one of a first type and second type. The single well defines an active region in the second memory cell region of the second substrate. Multiple second cell strings are arranged on the second substrate in the second active region. Although the second memory cell region includes only a single well, during a programming or erase operation of the memory cells of the second layer, requiring a high voltage to be applied to the single well in the substrate of the second layer, the high voltage will not interfere with the operation of the peripheral transistors of the first layer, second layer, or other layers, since they are isolated from each other. As a result, the substrate of the second layer can be prepared to have a thinner profile, and with fewer processing steps, resulting in devices with higher-density, greater reliability, and reduced fabrication costs.
摘要:
In multiple-layered memory devices, memory systems employing the same, and methods of forming such devices, a second memory device layer on a first memory device layer comprises a second substrate including a second memory cell region. The second substrate includes only a single well in the second memory cell region, the single well of the second memory cell region comprising a semiconducting material doped with impurity of one of a first type and second type. The single well defines an active region in the second memory cell region of the second substrate. Multiple second cell strings are arranged on the second substrate in the second active region. Although the second memory cell region includes only a single well, during a programming or erase operation of the memory cells of the second layer, requiring a high voltage to be applied to the single well in the substrate of the second layer, the high voltage will not interfere with the operation of the peripheral transistors of the first layer, second layer, or other layers, since they are isolated from each other. As a result, the substrate of the second layer can be prepared to have a thinner profile, and with fewer processing steps, resulting in devices with higher-density, greater reliability, and reduced fabrication costs.
摘要:
A driving method of a three-dimensional memory device having a plurality of layers is provided. One of the layers is selected. A well of the selected layer is biased with a first well voltage. A word line voltage is applied to a selected word line of the selected layer. A well of an unselected layer is biased with a second well voltage higher than the first well voltage.
摘要:
One embodiment exemplarily described herein can be generally characterized as a semiconductor device that includes a lower level device layer located over a semiconductor substrate, an interlayer insulating film located over the lower level device layer and an upper level device layer located over the interlayer insulating film. The lower level device layer may include a plurality of devices formed in the substrate. The upper level device layer may include a plurality of semiconductor patterns and at least one device formed in each of the plurality of semiconductor patterns. The plurality of semiconductor patterns may be electrically isolated from each other. Each of the plurality of semiconductor patterns may include at least one active portion and at least one body contact portion electrically connected to the at least one active portion.