摘要:
In the liquid crystal display, a liquid crystal layer is provided between a first insulating substrate and a second insulating substrate. A plurality of first electrodes are arranged in parallel on the first insulating substrate in a first direction, and a first insulating layer is formed on the entire surface of the first insulating substrate and covers the first electrodes. A semiconductor layer is formed on the first insulating layer, and a second insulating layer is formed thereon and covers the entire surface of the first insulating substrate. This triple-layered structure constitutes a switching element array. A plurality of second electrodes are arranged in parallel on the second insulating electrode in a second direction crossing the first direction. Thus, the switching element array sandwiched between the first and second electrodes is used for driving the liquid crystal layer.
摘要:
An active matrix substrate for the liquid crystal display has a switching circuit for switching on each of picture elements which includes a corresponding gate bus line, source bus line and a switching transistor. Further, the switching circuit includes at least one redundant structure to avoid inoperativeness of the switching circuit.
摘要:
The method for producing a metallic wiring board of this invention comprises the steps of: implanting nitrogen on a surface of a substrate; forming a metallic film including, as a main component, one of Ta and Nb on the surface of the substrate where nitrogen is implanted by a sputtering method to form a metallic wiring by patterning the metallic film; and forming an insulating film by anodic oxidation of a surface of the metallic wiring. In the step of forming a metallic wiring form Ta or Nb on a substrate or a protective layer including nitrogen to anodic-oxidize the surface of the metallic wiring, Ta ions or Nb ions do not enter the substrate. Further, the substrate or a protective layer is doped with nitrogen, and a Ta layer is formed by the sputtering method thereon. The sputtering method has a characteristic that a material contained in the substrate is mixed into a film formed in the initial stage of the coating. Therefore, the doped nitrogen enters the Ta film, and a thin .alpha.-Ta layer is formed on the substrate or the protective film. The Ta layer to be epitaxially grown thereon is an .alpha.-Ta layer including no impurity. Thus, a Ta layer with a specific resistance of about 25 .mu..OMEGA.cm is obtained.
摘要:
A method for producing metal wirings on an insulating substrate is disclosed. The method comprises the steps of forming a metal wiring layer of a predetermined shape on a predetermined position of the insulating substrate, the metal wiring layer being made of a metal capable of being oxidized; implanting the metal wiring layer with an impurity element; and forming an insulating layer by oxidizing the surface of the metal wiring layer after implanting the impurity element.
摘要:
A metallic wiring board includes nitrogen implanted in a surface of a substrate or a protective layer including nitrogen formed on the substrate upon which is formed a metallic film including, as a main component, one of Ta and Nb. An insulating film covering the metallic wiring is formed by anodic oxidation. The nitrogen in the substrate or the protective layer prevents Ta (or Nb) ions from entering the substrate during the anodic oxidation of the metallic wiring. As a result, insulating properties of the substrate are not degraded during the oxidation.
摘要:
A method for producing an active matrix substrate using a thin film transistor having a gate electrode on an insulating substrate covered with a gate insulating layer, a semiconductor layer on the gate insulating layer, a channel protective layer on the semiconductor layer, a drain electrode having a portion overlying the gate electrode with the interposition of the gate insulating layer, the semiconductor layer and the channel protective layer, and a source electrode having a portion overlying the gate electrode with the interposition of the gate insulating layer, the method enhancing the transistor characteristics of the active matrix substrate with minimum leakage and the removal of an off-current generated from the presence of electrons and holes.
摘要:
A method for producing a semiconductor device including forming an electrode or an electrode wiring by forming a tantalum thin film by sputtering is provided. In this method, a krypton gas in which nitrogen is mixed as a reactive gas is used as a sputtering gas, and a product of the pressure of the sputtering gas and a target-substrate distance is set in the range of 0.01 m.Pa to 0.08 m.Pa.
摘要:
A semiconductor device includes an insulating substrate; and an electrode wiring provided on an area of the insulating substrate. The electrode wiring is formed of a material selected from the group consisting of an alloy of Ta and Nb, Nb, and a metal mainly including Nb. A method for producing a semiconductor device includes the steps of forming a layer including Nb doped with nitrogen on an insulating substrate by a sputtering method in an atmosphere of an inert gas including nitrogen, and then patterning the layer to form an electrode wiring on an area of the insulating substrate; and forming an oxide film at a portion of the electrode wiring by anodization, the portion including at least a surface thereof.
摘要:
Using a gate electrode formed on a semiconductor film as a mask, impurity ions are implanted into the semiconductor film. Thereafter, a photoresist film is formed on the substrate including the gate electrode. The photoresist film on the gate electrode is then exposed to light from a back side of the gate electrode. By this self-alignment method, a resist pattern narrower than the gate electrode is formed. Then, the gate electrode is narrowed through the etching thereof using the photoresist pattern as a mask, whereby an offset gate structure of a thin-film transistor is obtained.
摘要:
A reflection type liquid crystal display comprises a first substrate including a rough portion formed on a surface thereof and a reflection electrode formed on the rough portion; a second substrate including a counter electrode formed thereon; and a liquid crystal layer interposed between the first and second substrates, driven by the reflection electrode and the counter electrode to perform a display. The reflection electrode is made of aluminum or aluminum alloy, and the reflection electrode includes surface oxidation layer having at least 5 nm thickness. The first substrate includes a vertical alignment film made of insulating material formed on the surface oxidation layer of the reflection electrode.