摘要:
A light-emitting device which includes a semiconductor light-emitting element, and a plurality of plate-like wavelength conversion members which are disposed to face the semiconductor light-emitting element and are inclined with respect to the optical axis of excitation light emitted from the semiconductor light-emitting element, the plate-like wavelength conversion members containing respectively a fluorescent material which is capable of absorbing the excitation light and outputting light having a different wavelength from that of the excitation light, and the plate-like wavelength conversion members as a whole emitting visible light.
摘要:
A light-emitting device which includes a semiconductor light-emitting element, and a plurality of plate-like wavelength conversion members which are disposed to face the semiconductor light-emitting element and are inclined with respect to the optical axis of excitation light emitted from the semiconductor light-emitting element, the plate-like wavelength conversion members containing respectively a fluorescent material which is capable of absorbing the excitation light and outputting light having a different wavelength from that of the excitation light, and the plate-like wavelength conversion members as a whole emitting visible light.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
摘要翻译:根据一个实施例,半导体发光器件包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层, 发出峰值波长为440纳米以上的光。 对第一半导体层施加拉伸应变。 第一半导体层的边缘位错密度为5×10 9 / cm 2以下。 第一半导体层和发光层之间的晶格失配因子为0.11%以下。
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
摘要翻译:根据一个实施例,半导体发光器件包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层, 发出峰值波长为440纳米以上的光。 对第一半导体层施加拉伸应变。 第一半导体层的边缘位错密度为5×10 9 / cm 2以下。 第一半导体层和发光层之间的晶格失配因子为0.11%以下。
摘要:
According to one embodiment, a nitride semiconductor device includes a substrate and a semiconductor functional layer. The substrate is a single crystal. The semiconductor functional layer is provided on a major surface of the substrate and includes a nitride semiconductor. The substrate includes a plurality of structural bodies disposed in the major surface. Each of the plurality of structural bodies is a protrusion provided on the major surface or a recess provided on the major surface. An absolute value of an angle between a nearest direction of an arrangement of the plurality of structural bodies and a nearest direction of a crystal lattice of the substrate in a plane parallel to the major surface is not less than 1 degree and not more than 10 degrees.
摘要:
Disclosed herein is a high-reliability semiconductor device. The laser diode includes: a substrate; a multi-layer film including a first conductivity type cladding layer provided on the substrate, a first conductivity type guide layer provided on the first conductivity type cladding layer, an active layer provided on the first conductivity type guide layer, a second conductivity type guide layer provided on the active layer, and a second conductivity type cladding layer provided on the second conductivity type guide layer, each of the layers being made of a nitride-based III-V group compound semiconductor; a first protective layer made of nitride and provided on a light emitting surface of the laser diode; and a second protective layer provided on the first protective layer and made of nitride having a refractive index different from that of the first protective layer.
摘要:
A semiconductor light emitting element includes: an {0001} n-type semiconductor substrate formed of a III-V semiconductor, which is in a range of 0° to 45° in inclination angle into a direction, and which is in a range of 0° to 10° in inclination angle into a direction; an n-type layer formed of a III-V semiconductor on the n-type semiconductor substrate; an n-type guide layer formed of a III-V semiconductor above the n-type layer; an active layer formed of a III-V semiconductor above the n-type guide layer; a p-type first guide layer formed of a III-V semiconductor above the active layer; a p-type contact layer formed of a III-V semiconductor above the p-type first guide layer; and an concavo-convex layer formed of a III-V semiconductor between the p-type first guide layer and the p-type contact layer. The concavo-convex layer has concave portions and convex portions which are alternately and regularly arranged at a top face thereof, and has lower p-type impurity concentration than that of the p-type contact layer.
摘要:
The present invention provides a semiconductor light emitting element with excellent color rendering properties, a method for manufacturing the semiconductor light emitting element, and a light emitting device. The semiconductor light emitting element includes: a semiconductor substrate that has a convex portion having a tilted surface as an upper face, and a concave portion formed on either side of the convex portion, the concave portion having a smaller width than the convex portion, a bottom face of the concave portion being located in a deeper position than the upper face of the convex portion; and a light emitting layer that is made of a nitride-based semiconductor and is formed on the semiconductor substrate so as to cover at least the convex portion.
摘要:
The present invention provides a semiconductor light emitting element with excellent color rendering properties, a method for manufacturing the semiconductor light emitting element, and a light emitting device. The semiconductor light emitting element includes: a semiconductor substrate that has a convex portion having a tilted surface as an upper face, and a concave portion formed on either side of the convex portion, the concave portion having a smaller width than the convex portion, a bottom face of the concave portion being located in a deeper position than the upper face of the convex portion; and a light emitting layer that is made of a nitride-based semiconductor and is formed on the semiconductor substrate so as to cover at least the convex portion.
摘要:
The present invention provides a semiconductor light emitting element with excellent color rendering properties, a method for manufacturing the semiconductor light emitting element, and a light emitting device. The semiconductor light emitting element includes: a semiconductor substrate that has a convex portion having a tilted surface as an upper face, and a concave portion formed on either side of the convex portion, the concave portion having a smaller width than the convex portion, a bottom face of the concave portion being located in a deeper position than the upper face of the convex portion; and a light emitting layer that is made of a nitride-based semiconductor and is formed on the semiconductor substrate so as to cover at least the convex portion.