Abstract:
Provided are methods of forming a stack of electrodes and three-dimensional semiconductor devices fabricated thereby. The device may include electrodes sequentially stacked on a substrate to constitute an electrode structure. each of the electrodes may include a connection portion protruding horizontally and outward from a sidewall of one of the electrodes located thereon and an aligned portion having a sidewall coplanar with that of one of the electrodes located thereon or thereunder. Here, at least two of the electrodes provided vertically adjacent to each other may be provided in such a way that the aligned portions thereof have sidewalls that are substantially aligned to be coplanar with each other.
Abstract:
In an integrated circuit device and method of manufacturing the same, a resistor pattern is positioned on a device isolation layer of a substrate. The resistor pattern includes a resistor body positioned in a recess portion of the device isolation layer and a connector making contact with the resistor body and positioned on the device isolation layer around the recess portion. The connector has a metal silicide pattern having electric resistance lower than that of the resistor body at an upper portion. A gate pattern is positioned on the active region of the substrate and includes the metal silicide pattern at an upper portion. A resistor interconnection is provided to make contact with the connector of the resistor pattern. A contact resistance between the connector and the resistor interconnection is reduced.
Abstract:
A method for fabricating a semiconductor device is provided. A first insulation layer and a second insulation layer are formed over the substrate having a gate. A spacer etching process is performed to form an etched first insulation layer and an etched second insulation layer. The etched first insulation layer partially protrudes from the substrate and contacts sidewalls of the gate. The etched second insulation layer is removed through a selective epitaxial growth (SEG) process that forms an epitaxial layer over the exposed substrate. One of facets of the epitaxial layer is formed on the protruding portion of the etched first insulation layer. A third insulation layer is formed on sidewalls of the etched first insulation layer and the one of the facets of the epitaxial layer is covered by the third insulation layer.
Abstract:
A method for forming a semiconductor device includes forming a gate pattern over a silicon substrate, forming gate spacers over both sidewalls of the gate pattern, forming a dummy gate spacer over a sidewall of each one of the gate spacers, forming a recess region having inclined sidewalls extending in a direction to a channel region under the gate pattern by recess-etching the silicon substrate, filling the recess region with an epitaxial film, which becomes a source region or a drain region, through a selective epitaxial growth process, and removing the dummy gate spacer.
Abstract:
Provided are methods of forming a stack of electrodes and three-dimensional semiconductor devices fabricated thereby. The device may include electrodes sequentially stacked on a substrate to constitute an electrode structure. each of the electrodes may include a connection portion protruding horizontally and outward from a sidewall of one of the electrodes located thereon and an aligned portion having a sidewall coplanar with that of one of the electrodes located thereon or thereunder. Here, at least two of the electrodes provided vertically adjacent to each other may be provided in such a way that the aligned portions thereof have sidewalls that are substantially aligned to be coplanar with each other.
Abstract:
A semiconductor device includes: a gate pattern over a substrate; recess patterns provided in the substrate at both sides of the gate pattern, each having a side surface extending below the gate pattern; and a source and a drain filling the recess patterns, and forming a strained channel under the gate pattern.
Abstract:
A method of fabricating an integrated circuit device includes forming first and second mask structures on respective first and second regions of a feature layer. Each of the first and second mask structures includes a dual mask pattern and an etch mask pattern thereon having an etch selectivity relative to the dual mask pattern. The etch mask patterns of the first and second mask structures are etched to partially remove the etch mask pattern from the second mask structure. Spacers are formed on opposing sidewalls of the first and second mask structures. The first mask structure is selectively removed from between the spacers in the first region to define a first mask pattern including the opposing sidewall spacers with a void therebetween in the first region, and a second mask pattern including the opposing sidewall spacers with the second mask structure therebetween in the second region.
Abstract:
A spacer grid for dual-cooling nuclear fuel rods arranged at a narrow interval. The spacer grid solves the problem in which, since the dual-cooling nuclear fuel rods are used to improve the cooling performance and stability of nuclear fuel and obtain high burnup and output, the outer diameter of each dual-cooling nuclear fuel rod is increased, and thus the gap between each dual-cooling nuclear fuel rod and the grid strap is decreased. The spacer grid includes first grid straps and second grid straps, which are crossed and arranged in transverse and longitudinal directions at regular intervals and have the shape of a flat strip, and support structures, which are fitted into the first and second grid straps around intersections of the first and second grid straps so as to support the dual-cooling nuclear fuel rods.
Abstract:
The present invention provides a composition for surface modification of a heat sink, the composition including: 0.01 to 10 parts by weight of an organic titanium compound; 0.01 to 5 parts by weight of an organic silane compound; 0.1 to 10 parts by weight of an organic acid; 0.01 to 5 parts by weight of a sequestering agent; and 0.1 to 10 parts by weight of a buffer with respect to 100 parts by weight of distilled water. The composition of the present invention provides excellent adhesion strength with prepreg, and improve heat releasing performance.
Abstract:
Step shape pad structure and wiring structure in vertical type semiconductor device are include a first conductive line having a first line shape and including first pad regions at an upper surface of an edge portion, and a second conductive line having s second line shape and being spaced apart from the first conductive line and provided on the first conductive line. An end portion of the first conductive line is extended to a first position. Second pad regions are included on an upper surface of an edge portion of the second conductive line. An end portion of the second conductive line is extended to the first position. The second conductive line includes a dent portion at a facing portion to the first pad regions in a vertical direction to expose the first pad regions. The pad structure may be used in a vertical type nonvolatile memory device.