摘要:
A micromachined cell lysis device with electrodes that are spaced by less than 10 μm from one another. The cells are attracted to the space between the electrodes and then lysed.
摘要:
In various embodiments, high-viscosity fluids are utilized to fill implantable reservoirs while filling accuracy is improved via elimination of dead space and/or utilization of pushing fluids to urge the high-viscosity fluid into the implantable reservoir.
摘要:
In various embodiments, an intraocular lens features multiple compartments that, depending on the angular position of the lens, present different combinations of fluids to the central optical region of the lens to alter the refractive power of the lens.
摘要:
Implantable reservoir structures include an interior and/or exterior modifying element joined to the interior and/or exterior surface of the membrane defining the reservoir in order to alter one or more physical properties thereof. The physical properties can be mechanical (e.g., material strength, flexibility, shear modulus, Young's modulus, hardness, and/or ductility); optical (e.g., refraction, transparency, transmission spectrum, absorption spectrum, fluorescence spectrum, and/or color); and/or permeability to liquids generally or to a particular type of liquid, solute, or suspended material.
摘要:
Embodiments of an implantable device for delivering a therapeutic agent to a patient include a reservoir configured to contain a liquid comprising the therapeutic agent, and a cannula in fluid communication with the reservoir. When a predetermined cracking pressure is reached, a valve opens and allows the liquid to flow through the cannula.
摘要:
A microfiltration apparatus and method for separating cells, such as circulating tumor cells, from a sample using a microfiltration device having a top porous membrane and a bottom porous membrane. The porous membranes are formed from parylene and assembled using microfabrication techniques. The porous membranes are arranged so that the pores in the top membrane are offset from the pores in the bottom membrane.
摘要:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
摘要:
A MEMS device with an overhanging ‘polymer’ capillary provides vital and significant improvements in interfacing a MEMS electrospray nozzle to an MS inlet or other macroscopic instrumentation. The fabrication methodology associated therewith is easily expanded to include built-in micro particle filters and centimeter long serpentine micro channels provided on-chip and fabricated using a low temperature process.
摘要:
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
摘要:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, frits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.