摘要:
The objective of the present invention is to provide a vehicle motion control device capable of controlling the driving force distribution to the wheels with superior stability and response while effectively utilizing the tire grip. Specifically, the present invention provides a vehicle motion control device for a vehicle, the vehicle having a plurality of wheels and a driving device for driving the wheels based on a driving force/load distribution ratio, having: a force detection unit for detecting forces that act on the wheels; a target distribution ratio calculating unit for obtaining nonlinear terms by use of a group of parameters including the forces detected by the force detection unit, and obtaining a target value of the driving force/load distribution ratio so as to minimize the nonlinear terms, the nonlinear terms being included in elements of a system matrix of equations of state that describe a state of motion of the vehicle; and a driving device control unit for controlling the driving device based on the target value of the driving force/load distribution ratio.
摘要:
A detector 22 detects action forces acting on a wheel 5 provided to a vehicle. An estimator 21a estimates the present value of a vehicle mass m on the basis of an action force acting in a component force direction out of the action forces, and an acceleration of the vehicle in the component force direction. Specifically, the estimator 21a estimates the present value of the vehicle mass m on the basis of an acceleration ax in the longitudinal direction and a longitudinal force Fx or on the basis of an acceleration ay in the lateral direction and a lateral force Fy. The estimator estimates the present value of a center-of-gravity height of the vehicle on the basis of the detected variation amount of the vertical force and the detected longitudinal force.
摘要:
The objective of the present invention is to provide a vehicle behavior control device, wherein vehicle behaviors are quickly detected by use of a small number of sensors for achieving stability without sacrificing speed while giving a driver natural, smooth steering. According to the present invention, the vehicle behavior control device includes: a force detecting unit for detecting a tire force acting on each wheel of a vehicle; a yaw moment computing unit for computing a yaw moment of the vehicle based on the tire force acting on each wheel detected by the force detecting unit, the yaw moment being generated by a driving force transmitted to each wheel; a cornering power computing unit for computing a cornering power of each wheel based on the tire force acting on each wheel detected by the force detection unit; and a correcting unit for correcting the yaw moment based on a moment of inertia of the vehicle and the cornering powers.
摘要:
A control unit 5 calculates, by a statistical processing, the current front/rear-directional acceleration, the current front/rear-directional velocity, and the current front/rear-directional position of the three-dimensional object to be determined while considering an error caused by a camera. These values are used in the statistical processing so as to calculate the front/rear-directional acceleration after Δt seconds, the front/rear-directional velocity after Δt seconds, and the front/rear-directional position after Δt seconds, and so as to obtain a probability of contact after Δt seconds based on the front/rear-directional position after Δt seconds.
摘要:
When a vehicle is turning, it is determined whether an inside turning wheel has sufficient grip force. If the inside wheel has sufficient grip force, left and right forces orthogonally input to the vehicle body are calculated based on longitudinal and lateral tire forces, and are checked if there is a difference in the left and right forces. If there is such a left-right force difference and the vehicle is not undergoing a braking operation, the turning angle of the inside wheel is corrected using a left-right independent steering device that independently controls the turning angles of left and right wheels, so that the difference becomes zero. Thus, the difference in left and right forces laterally input to the vehicle body is reduced to minimize a jack-up force. This improves the driving stability and achieves a good roll feel by means of a jack-down force, thereby achieving improved driving feel.
摘要:
A control unit 5 calculates, by a statistical processing, the current front/rear-directional acceleration, the current front/rear-directional velocity, and the current front/rear-directional position of the three-dimensional object to be determined while considering an error caused by a camera. These values are used in the statistical processing so as to calculate the front/rear-directional acceleration after Δt seconds, the front/rear-directional velocity after Δt seconds, and the front/rear-directional position after Δt seconds, and so as to obtain a probability of contact after Δt seconds based on the front/rear-directional position after Δt seconds.
摘要:
A detector 22 detects action forces acting on a wheel 5 provided to a vehicle. An estimator 21a estimates the present value of a vehicle mass m on the basis of an action force acting in a component force direction out of the action forces, and an acceleration of the vehicle in the component force direction. Specifically, the estimator 21a estimates the present value of the vehicle mass m on the basis of an acceleration ax in the longitudinal direction and a longitudinal force Fx or on the basis of an acceleration ay in the lateral direction and a lateral force Fy. The estimator estimates the present value of a center-of-gravity height of the vehicle on the basis of the detected variation amount of the vertical force and the detected longitudinal force.
摘要:
A wheel adjusting device can adjust separately the wheel angles of left and right wheels. A judgment portion which determines whether vehicle braking is to be permitted or not based on the driving state of the vehicle. A control portion controls the wheel adjusting device. More specifically, under conditions where the vehicle braking is permitted by the judgment portion, the control portion defines the wheel angles of the left and right wheels to be in opposite phase and adjusts the wheel angles in accordance with the braking force to be applied to the left and right wheels.
摘要:
A small-size, highly-reliable left-right independent steering device is provided without having to make significant modifications to existing vehicles or to develop dedicated vehicles. The device includes tie rods linked to left and right front wheels and axially expandable and contractible by means of small-size telescopic mechanism portions defined by ball-screw-type linear actuators. Each telescopic mechanism portion mainly includes a main body to which a tie-rod end of the corresponding tie rod is fixed, and an electric motor serving as an actuator attached substantially perpendicularly to the main body. The other end of the tie rod is coupled to a steering rod and functions as a piston rod that can advance or recede in the axial direction by means of the telescopic mechanism portion. Thus, the telescopic mechanism portions are mountable within tire wheels at positions free of, for example, suspension arms and stabilizers located near the tie rods.
摘要:
When supplied with a signal for correcting a vehicle behavior is input from a brake controller, an electrically-driven parking brake controller releases actuation of an electrically-driven parking brake when the electrically-driven parking brake is actuated. When supplied with a brake control amount when abnormality occurs in a main brake system is input the electrically-driven parking brake controller drives electric motors to generate the brake control amount concerned. Furthermore, when supplied with the brake control amount of the electrically-driven parking brake 30 from an ACC system, the electrically-driven parking brake controller drives the electric motors to generate the brake control amount concerned. The front-and-rear driving force distribution controller directly couples the front shaft and the rear shaft when the electrically-driven parking brake is actuated.