摘要:
Ultrafast battery devices having enhanced reliability and power density are provided. Such batteries can include a cathode including a first silicon substrate having a cathode structured surface, an anode including a second silicon substrate having an anode structured surface positioned adjacent to the cathode such that the cathode structured surface faces the anode structured surface, and an electrolyte disposed between the cathode and the anode. The anode structured surface can be coated with an anodic active material and the cathode structured surface can be coated with a cathodic active material.
摘要:
Ultrafast battery devices having enhanced reliability and power density are provided. Such batteries can include a cathode including a first silicon substrate having a cathode structured surface, an anode including a second silicon substrate having an anode structured surface positioned adjacent to the cathode such that the cathode structured surface faces the anode structured surface, and an electrolyte disposed between the cathode and the anode. The anode structured surface can be coated with an anodic active material and the cathode structured surface can be coated with a cathodic active material.
摘要:
Electrodes, energy storage devices using such electrodes, and associated methods are disclosed. In an example, an electrode for use in an energy storage device can comprise porous disks comprising a porous material, the porous disks having a plurality of channels and a surface, the plurality of channels opening to the surface; and a structural material encapsulating the porous disks; where the structural material provides structural stability to the electrode during use.
摘要:
An energy storage device includes an electrode made from an active material in which a plurality of channels have been etched. The channels are coated with an electrically functional substance selected from a conductor and an electrolyte.
摘要:
An energy storage device includes an electrode made from an active material in which a plurality of channels have been etched. The channels are coated with an electrically functional substance selected from a conductor and an electrolyte.
摘要:
In one embodiment, a structure for an energy storage device may include a first nanostructured substrate having a conductive layer and a dielectric layer formed on the conductive layer. A second nanostructured substrate includes another conductive layer. A separator separates the first and second nanostructured substrates and allows ions of an electrolyte to pass through the separator. The structure may be a nanostructured electrolytic capacitor with the first nanostructured substrate forming a positive electrode and the second nanostructured substrate forming a negative electrode of the capacitor.
摘要:
An energy storage device includes a first electrode (110, 510) including a first plurality of channels (111, 512) that contain a first electrolyte (150, 514) and a second electrode (120, 520) including a second plurality of channels (121, 522) that contain a second electrolyte (524). The first electrode has a first surface (115, 511) and the second electrode has a second surface (125, 521). At least one of the first and second electrodes is a porous silicon electrode, and at least one of the first and second surfaces comprises a passivating layer (535).
摘要:
Amorphous silicon anode electrodes and devices for a rechargeable batteries having enhanced structural stabilities are provided. An amorphous silicon anode can include an electrically conductive substrate and an electrode layer deposited onto the substrate, where the electrode layer is comprised of one or more amorphous silicon structures, and the amorphous silicon structures have at least one dimension that is less than or equal to about 500 nm.
摘要:
Ultracapacitor electrodes having an enhanced electrolyte-accessible surface area are provided. Such electrodes can include a porous substrate having a solution side and a collector side, the collector side operable to couple to a current collector and the solution side positioned to interact with an electrolytic solution when in use. The electrode can also include a conductive coating formed on the solution side of the porous substrate. The coating can have a first side positioned to interact with an electrolytic solution when in use and a second side opposite the first side. The coating can have discontinuous regions that allow access of an electrolyte solution to the second side during use to enhance electrolyte-accessible surface area of the conductive coating.
摘要:
An electro chemical deposition system is described for forming a feature on a semiconductor wafer. The electro chemical deposition is performed by powering electrodes that includes a cathode, an anode and a plurality of electrically independent auxiliary electrodes.