Abstract:
An optical sensing device comprises a photodetector array comprising at least one first photodetector and at least one second photodetector, the photodetector array being arranged on a semiconductor substrate. The optical sensing device further comprises a filter stack arranged on the substrate and covering the photodetector array. The filter stack comprises at least two first lower dielectric mirrors and at least two second lower dielectric mirrors, where a first and a second lower mirror are arranged above the first photodetector and a first and a second lower mirror are arranged above the second photodetector, and where the first lower mirrors have a different thickness in vertical direction which is perpendicular to the main plane of extension of the substrate than the second lower mirrors. The filter stack further comprises a spacer stack arranged on the first and second lower mirrors, and an upper dielectric mirror arranged on the spacer stack and covering the photodetector array. Furthermore, a method for manufacturing an optical sensing device is provided.
Abstract:
A dielectric layer (2) is arranged on the main surface (10) of a semiconductor substrate (1), and a passivation layer (6) is arranged on the dielectric layer. A metal layer (3) is embedded in the dielectric layer above an opening (12) in the substrate, and a metallization (14) is arranged in the opening. The metallization contacts the metal layer and forms a through-substrate via to a rear surface (11) of the substrate. A layer or layer sequence (7, 8, 9) comprising at least one further layer is arranged on the passivation layer above the opening. In this way the bottom of the through-substrate via is stabilized. A plug (17) may additionally be arranged in the opening without filling the opening.
Abstract:
An integrated optical sensor comprises a semiconductor substrate (1), an integrated circuit (2), a dielectric layer (6), a wiring (4), a structured filter layer (7) and a diffuser (10). The semiconductor substrate (1) has a main surface (11) and the integrated circuit (2) is arranged in the substrate (1) at or near the main surface (11). Furthermore, the integrated circuit (2) comprises at least one light sensitive component (3). The dielectric layer (6) comprises at least one compound of the semiconductor material. The dielectric layer (6) is arranged on or above the main surface (11). The wiring (4) is arranged in the dielectric layer (6) and provides an electrical connection to the integrated circuit (2), i.e. the wiring is connected to the integrated circuit (2). The structured filter layer (7) is arranged on the dielectric layer (6) and faces the at least one light sensitive component (3), i.e. the diffusor (10) is positioned over the structured filter layer (7). In particular, the structured filter layer (7) is adapted for diffused incident light. The diffuser (10) is arranged on the structured filter layer (7).
Abstract:
The semiconductor device for detection of radiation comprises a semiconductor substrate (1) with a main surface (11), a dielectric layer (6) comprising at least one compound of a semiconductor material, an integrated circuit (2) including at least one component sensitive to radiation (3), a wiring (4) of the integrated circuit embedded in an intermetal layer (8) of the dielectric layer (6), an electrically conductive through-substrate via (5) contacting the wiring, and an optical filter element (7) arranged immediately on the dielectric layer above the component sensitive to radiation. The dielectric layer comprises a passivation layer (9) at least above the through-substrate via, the passivation layer comprises a dielectric material that is different from the intermetal layer (8), and the wiring is arranged between the main surface and the passivation layer.
Abstract:
The semiconductor device for detection of radiation comprises a semiconductor substrate (1) with a main surface (11), a dielectric layer (6) comprising at least one compound of a semiconductor material, an integrated circuit (2) including at least one component sensitive to radiation (3), a wiring (4) of the integrated circuit embedded in an intermetal layer (8) of the dielectric layer (6), an electrically conductive through-substrate via (5) contacting the wiring, and an optical filter element (7) arranged immediately on the dielectric layer above the component sensitive to radiation. The dielectric layer comprises a passivation layer (9) at least above the through-substrate via, the passivation layer comprises a dielectric material that is different from the intermetal layer (8), and the wiring is arranged between the main surface and the passivation layer.
Abstract:
An optical sensing device comprises a photodetector array comprising at least one first photodetector and at least one second photodetector, the photodetector array being arranged on a semiconductor substrate. The optical sensing device further comprises a filter stack arranged on the substrate and covering the photodetector array. The filter stack comprises at least two first lower dielectric mirrors and at least two second lower dielectric mirrors, where a first and a second lower mirror are arranged above the first photodetector and a first and a second lower mirror are arranged above the second photodetector, and where the first lower mirrors have a different thickness in vertical direction which is perpendicular to the main plane of extension of the substrate than the second lower mirrors. The filter stack further comprises a spacer stack arranged on the first and second lower mirrors, and an upper dielectric mirror arranged on the spacer stack and covering the photodetector array. Furthermore, a method for manufacturing an optical sensing device is provided.
Abstract:
A 3D-Integrated optical sensor comprises a semiconductor substrate, an integrated circuit, a wiring, a filter layer, a transparent spacer layer, and an on-chip diffuser. The semiconductor substrate has a main surface. The integrated circuit comprises at least one light sensitive area and is arranged in the substrate at or near the main surface. The wiring provides an electrical connection to the integrated circuit and is connected to the integrated circuit. The wiring is arranged on or in the semiconductor substrate. The filter layer has a direction dependent transmission characteristic and is arranged on the integrated circuit. In fact, the filter layer at least covers the light sensitive area. The transparent spacer layer is arranged on the main surface and, at least partly, encloses the filter layer. A spacer thickness is arranged to limit a spectral shift of the filter layer. The on-chip diffuser is arranged on the transparent spacer layer.
Abstract:
A sensor (2) is arranged at a main surface (10) of a semiconductor substrate (1), and a filter (3) is arranged above the sensor. A through-substrate via (4) penetrates the substrate outside the region of the sensor. A semiconductor body is applied above the main surface and then partially removed at least in an area above the sensor. A portion of the semiconductor body remains above the through-substrate via as a frame layer (5). The filter is on a level with the frame layer.
Abstract:
The integrated imaging device comprises a substrate (1) with an integrated circuit (4), a cover (2), a cavity (6) enclosed between the substrate (1) and the cover (2), and a sensor (5) or an array of sensors (5) arranged in the cavity (6). A surface (11, 12) of the substrate (1) or the cover (2) opposite the cavity (6) has a structure (8) directing incident radiation. The surface structure (8) may be a plate zone or a Fresnel lens focusing infrared radiation and may be etched into the surface of the substrate or cover, respectively.