Abstract:
A semiconductor device includes a semiconductor body, an electrically conductive via which extends through at least a part of the semiconductor body, and where the via has a top side and a bottom side that faces away from the top side, an electrically conductive etch-stop layer arranged at the bottom side of the via in a plane which is parallel to a lateral direction, where the lateral direction is perpendicular to a vertical direction given by the main axis of extension of the via, and at least one electrically conductive contact layer at the bottom side of the via in a plane which is parallel to the lateral direction. The etch-stop layer is arranged between the electrically conductive via and the contact layer in the vertical direction, the lateral extent in the lateral direction of the etch-stop layer amounts to at least 2.5 times the lateral extent of the via in the lateral direction, and the lateral extent of the contact layer is smaller than the lateral extent of the via or the lateral extent of the contact layer amounts to at least 2.5 times the lateral extent of the via.
Abstract:
A method of producing an optical sensor at wafer-level, comprising the steps of providing a wafer having a main top surface and a main back surface and arrange at or near the top surface of the wafer at least one first integrated circuit having at least one light sensitive component. Furthermore, providing in the wafer at least one through-substrate via for electrically contacting the top surface and back surface and forming a first mold structure by wafer-level molding a first mold material over the top surface of the wafer, such that the first mold structure at least partly encloses the first integrated circuit. Finally, forming a second mold structure by wafer-level molding a second mold material over the first mold structure, such that the second mold structure at least partly encloses the first mold structure.
Abstract:
A dielectric layer (2) is arranged on the main surface (10) of a semiconductor substrate (1), and a passivation layer (6) is arranged on the dielectric layer. A metal layer (3) is embedded in the dielectric layer above an opening (12) in the substrate, and a metallization (14) is arranged in the opening. The metallization contacts the metal layer and forms a through-substrate via to a rear surface (11) of the substrate. A layer or layer sequence (7, 8, 9) comprising at least one further layer is arranged on the passivation layer above the opening. In this way the bottom of the through-substrate via is stabilized. A plug (17) may additionally be arranged in the opening without filling the opening.
Abstract:
The method of producing an interposer-chip-arrangement, comprises providing an interposer (1) with an integrated circuit (25), arranging a dielectric layer (2) with metal layers embedded in the dielectric layer above a main surface (10) of the interposer, connecting the integrated circuit with at least one of the metal layers, forming an interconnection (7) through the interposer, the interconnection contacting one of the metal layers, arranging a further dielectric layer (3) above a further main surface (11) of the interposer opposite the main surface and arranging a further metal layer in or on the further dielectric layer, the further metal layer being connected with the interconnection, arranging a chip provided with at least one contact pad at the main surface or at the further main surface, and electrically conductively connecting the contact pad with the interconnection.
Abstract:
A photosensor (2) is arranged in a semiconductor substrate (1) at a main surface (10), a dielectric layer (4) is arranged on or above the main surface, the dielectric layer including a metal layer (6) electrically connected with the photosensor, and an aperture layer (16) formed from an opaque or semitransparent material is arranged on or above the dielectric layer. The aperture layer is provided with an array of transparent aperture zones (18) above the photosensor, each of the aperture zones penetrating the aperture layer.
Abstract:
The semiconductor device comprises a substrate (1) of semiconductor material with a front side (4) and an opposite rear side (7), a wiring layer (5) at the front side (4), a further wiring layer (8) at the rear side (7), and a through-substrate via (3) connecting the wiring layer (5) and the further wiring layer (8). A hot plate (24) is arranged on or in the substrate, and a sensor layer (21) is arranged in the vicinity of the hot plate. A mold compound (14) is arranged on the rear side (7) above the substrate (1), a cavity (17) is formed in the mold compound (14) to accommodate the sensor layer (21), and the cavity (17) is covered with a membrane (15).
Abstract:
A method for manufacturing a semiconductor device comprises the steps of providing a semiconductor body with a main plane of extension, and forming a trench in the semiconductor body from a top side of the semiconductor body in a vertical direction which is perpendicular to the main plane of extension of the semiconductor body. The method further comprises the steps of coating inner walls of the trench with an isolation layer, depositing a metallization layer within the trench, and depositing a passivation layer within the trench such that an inner volume of the trench is free of any material, wherein inner surfaces that are adjacent to the inner volume are treated to be hydrophobic at least in places. Furthermore, a semiconductor device is provided.
Abstract:
A semiconductor substrate is provided with an annular cavity extending from a front side of the substrate to an opposite rear side. A metallization is applied in the annular cavity, thereby forming a through-substrate via and leaving an opening of the annular cavity at the front side. A solder ball is placed above the opening and a reflow of the solder ball is effected, thereby forming a void of the through-substrate via, the void being covered by the solder ball.
Abstract:
The semiconductor device for detection of radiation comprises a semiconductor substrate (1) with a main surface (11), a dielectric layer (6) comprising at least one compound of a semiconductor material, an integrated circuit (2) including at least one component sensitive to radiation (3), a wiring (4) of the integrated circuit embedded in an intermetal layer (8) of the dielectric layer (6), an electrically conductive through-substrate via (5) contacting the wiring, and an optical filter element (7) arranged immediately on the dielectric layer above the component sensitive to radiation. The dielectric layer comprises a passivation layer (9) at least above the through-substrate via, the passivation layer comprises a dielectric material that is different from the intermetal layer (8), and the wiring is arranged between the main surface and the passivation layer.
Abstract:
A semiconductor device comprises a semiconductor body and an electrically conductive via which extends through at least a part of the semiconductor body, where the via has a lateral size which is given in a first lateral direction that is perpendicular to a vertical direction given by the main axis of extension of the via and where the via has a top side and a bottom side that faces away from the top side. The semiconductor device further comprises an electrically conductive etch-stop layer arranged at the bottom side of the via in a plane which is parallel to the first lateral direction, and at least one electrically conductive contact layer at the bottom side of the via in a plane which is parallel to the first lateral direction. The lateral extent in the first lateral direction of the etch-stop layer is larger than the lateral size of the via and the lateral extent in the first lateral direction of the contact layer is smaller than the lateral size of the via. Furthermore, the etch-stop layer is arranged between the electrically conductive via and the contact layer in the vertical direction.