Abstract:
An optical sensor arrangement for time-of-flight comprises a first and a second cavity separated by an optical barrier and covered by a cover arrangement. An optical emitter is arranged in the first cavity, a measurement and a reference photodetector are arranged in the second cavity. The cover arrangement comprises a plate and layers of material arranged on an inner main surface thereof. The layers comprise an opaque coating with a first and second aperture above the first cavity, and with a third and fourth aperture above the second cavity. The measurement photodetector is configured to detect light entering the second cavity through the fourth aperture. The second and the third aperture establish a reference path for light from the emitter to the reference photodetector.
Abstract:
The method comprises the steps of providing a semiconductor device comprising a semiconductor layer (1) with at least one radiation sensor (6) and a dielectric layer (2), arranging a web (3) comprising a plurality of recesses (4) on the dielectric layer, and introducing ink of different colors (A, B, C) in the recesses by inkjets (I).
Abstract:
The lateral single-photon avalanche diode comprises a semiconductor body comprising a semiconductor material of a first type of electric conductivity, a trench in the semiconductor body, and anode and cathode terminals. A junction region of the first type of electric conductivity is located near the sidewall of the trench, and the electric conductivity is higher in the junction region than at a farther distance from the sidewall. A semiconductor layer of an opposite second type of electric conductivity is arranged at the sidewall of the trench adjacent to the junction region. The anode and cathode terminals are electrically connected with the semiconductor layer and with the junction region, respectively. The junction region may be formed by a sidewall implantation.
Abstract:
The integrated imaging device comprises a substrate (1) with an integrated circuit (4), a cover (2), a cavity (6) enclosed between the substrate (1) and the cover (2), and a sensor (5) or an array of sensors (5) arranged in the cavity (6). A surface (11, 12) of the substrate (1) or the cover (2) opposite the cavity (6) has a structure (8) directing incident radiation. The surface structure (8) may be a plate zone or a Fresnel lens focusing infrared radiation and may be etched into the surface of the substrate or cover, respectively.
Abstract:
An optical sensor arrangement for time-of-flight comprises a first and a second cavity separated by an optical barrier and covered by a cover arrangement. An optical emitter is arranged in the first cavity, a measurement and a reference photodetector are arranged in the second cavity. The cover arrangement comprises a plate and layers of material arranged on an inner main surface thereof. The layers comprise an opaque coating with a first and second aperture above the first cavity, and with a third and fourth aperture above the second cavity. The measurement photodetector is configured to detect light entering the second cavity through the fourth aperture. The second and the third aperture establish a reference path for light from the emitter to the reference photodetector.
Abstract:
An apparatus includes an integrated waveguide structure, and a first light source operable to produce a probe beam having a first wavelength, wherein the probe beam is coupled into a first end of the waveguide structure. A second light source is operable to produce an excitation beam with having a second wavelength to excite gas molecules in close proximity to a path of the probe beam. A light detector is coupled to a second end of the integrated waveguide structure and is operable to detect the probe beam after it passes through the waveguide structure. The apparatus is operable such that excitation of the gas molecules results in a temperature increase of the gas molecules that induces a change in the probe beam that is measurable by the light detector.
Abstract:
The semiconductor device comprises a semiconductor substrate (1), a sensor or sensor array (2) arranged at a main surface (10) of the substrate, an integrated circuit (3) arranged at or above the main surface, and a focusing element (17) comprising recesses (4) formed within a further main surface (11) of the substrate opposite the main surface. The focusing element may be arranged opposite the sensor or sensor array (2), which may be a photosensor or photodetector or an array of photosensors or photodetectors, for instance. The focusing element (17) is formed by etching the recesses (4) into the semiconductor material.
Abstract:
The semiconductor device comprises a semiconductor substrate (1), a photosensor (2) integrated in the substrate (1) at a main surface (10), an emitter (12) of radiation mounted above the main surface (10), and a cover (6), which is at least partially transmissive for the radiation, arranged above the main surface (10). The cover (6) comprises a cavity (7), and the emitter (12) is arranged in the cavity (7). A radiation barrier (9) can be provided on a lateral surface of the cavity (7) to inhibit cross-talk between the emitter (12) and the photosensor (2).