Abstract:
The application provides articles, systems, and methods for adsorbing and desorbing nitrogen oxides (NOx) at desired temperatures. The catalytic article comprises a NOx adsorber composition comprising a platinum group metal (PGM) component disposed on or impregnated in a support material, and a substrate, wherein the catalytic article further comprises a magnetic material capable of inductive heating in response to an applied alternating electromagnetic field. The catalytic article further comprises a conductor associated therewith for receiving current and generating an alternating electromagnetic field in response thereto, wherein the conductor is positioned such that the generated alternating electromagnetic field is applied to at least a portion of the magnetic material. This field can inductively heat the magnetic material to heat the NOx adsorber composition to desorb the NOx from the NOx adsorber composition.
Abstract:
A process for removal of unwanted components from a feed gas mixture, wherein a temperature swing adsorption unit comprising at least two adsorption vessels is used, the method comprising cyclically operating the temperature swing adsorption unit in successive operation modes in each of which a different one of the at least two adsorption vessels is operated in an adsorption mode while a further one of the at least two adsorption vessels previously operated in the adsorption mode is operated in a regeneration mode, the adsorption mode comprising forming an adsorption gas stream using a part of the feed gas mixture and passing the adsorption gas stream through the adsorption vessel operated in the adsorption mode, and the regeneration mode comprising passing a regeneration gas stream through the adsorption vessel operated in the regeneration mode, thereby forming the purified gas mixture.
Abstract:
The present invention provides an oxidation catalyst composition suitable for at least partial conversion of gaseous hydrocarbon emissions, e.g., methane. The oxidation catalyst composition includes at least one platinum group metal (PGM) component supported onto a porous zirconia-containing material that provides an effect on hydrocarbon conversion activity. The porous zirconia-containing material is at least 90% by weight in the monoclinic phase. Furthermore, the PGM component can comprise at least one platinum group metal in the form of colloidally deposited nanoparticles. The oxidation catalyst composition can be used in the treatment of emissions from lean compressed natural gas engines.
Abstract:
An aftertreatment system includes a first oxidation catalyst, a second oxidation catalyst, and a turbocharger. The first oxidation catalyst is upstream of the turbocharger and includes a first oxidation catalyst formulation. The second oxidation catalyst is downstream of the turbocharger and includes a second oxidation catalyst formulation different than the first oxidation catalyst formulation. The second oxidation catalyst formulation is configured to promote conversion of nitric oxide (NO) to nitrogen dioxide (NO2).
Abstract:
A method to condense and recover CO2 from CO2 containing streams. A first step involve providing at more than one heat exchanger, with each heat exchanger having a first flow path for passage of a first fluid and a second flow path for passage of a second fluid. A second step involves passing a stream of very cold natural gas sequentially along the second flow path of each heat exchanger until it is heated for distribution and concurrently passing a CO2 containing stream sequentially along the first flow path of each heat exchanger, allowing the water vapor portion of the CO2 containing stream to condense and precipitate on the condensing heat exchangers. A third step involves passing a water vapor free CO2 containing stream to a cryogenic heat exchanger to condense, precipitate and recover CO2. This processes results in the recovery of CO2 and water vapor from CO2 containing streams using condensing heat exchangers, chiller, compressor, expander and power generator to recover the low value thermal heat available in CO2 containing waste streams.
Abstract:
The present invention discloses a method for preparing a catalyst, comprising the following steps: (1) taking a noble metal salt solution A, adding a modified alumina support material, stirring until uniform and standing; (2) drying the material obtained in step (1) in a vacuum, and calcining at 500° C.-600° C. for 1-4 hours to obtain a powder material containing the noble metal; (3) mixing the noble metal powder material, an adhesive and other components to be added, and ball-milling to obtain a uniform slurry; (4) preparing a noble metal solution B and adjusting pH to 0.5-1; and (5) mixing the slurry of the step (3) with the noble metal solution B, coating the mixture on a support, drying, and calcining at 500° C.-600° C. for 1-2 hours to obtain the target product. The method for preparing the catalyst of the present invention is simple, the conditions of the preparation process are easy to control and the preparation method has strong practicality. The prepared catalyst has a good quality, a low ignition temperature and a high catalytic conversion rate for methane at a relatively low temperature.
Abstract:
The present invention relates to excitation of hydrocarbons for catalytic type oxidation reactions, and more particularly, to treatment of excess methane emissions in a natural gas fueled engine to promote relatively more efficient catalytic methane oxidation reactions.
Abstract:
A system for producing carbon dioxide including a collection subsystem configured to collect a process gas, the process gas including a hydrocarbon, a combustion subsystem configured to combust the hydrocarbon in the process gas and output a gaseous combustion effluent, wherein the gaseous combustion effluent includes carbon dioxide and water, and a separation subsystem configured to separate the carbon dioxide from the gaseous combustion effluent.
Abstract:
An exhaust system (10) for a dual fuel engine comprising a catalyst assembly comprising a first catalyst (4) comprising a methane oxidizing catalyst and a second catalyst (6) comprising a selective catalytic reduction catalyst, the first catalyst (4) being positioned upstream of the second catalyst (6).
Abstract:
A system for storage and dosing of ammonia, including a solid ammonia storage material capable of binding and releasing ammonia reversibly by adsorption/absorption. The system is able to release ammonia gradually according to a demand that can vary over time with intermediate periods of no ammonia demand. A main storage unit and a start-up storage unit are provided. The storage units hold ammonia storage material. At least one one-way valve is provided via which the one main storage unit is in communication with the start-up storage unit. The one-way valve prevents any back-flow of ammonia from the start-up storage unit to the main storage unit. Heating devices are arranged to heat the main storage unit and the start-up storage unit separately to generate gaseous ammonia by thermal desorption from the solid storage material. A controller controls the heating power of the main storage unit and the start-up storage unit, thereby enabling ammonia release from at least one of the start-up and/or the main storage unit. A dosing valve controls ammonia flow from the storage units according to a demand.