Abstract:
A flux-cored wire for gas-shielded arc welding, including, in terms of mass % relative to a total mass of the wire, in the total of the steel outer sheath and the flux, C: 0.03 to 0.08%, Si: 0.1 to 0.6%, Mn: 1.5 to 2.8%, Cu: 0.01 to 0.5%, Ni: 0.35 to 0.98%, Ti: 0.05 to 0.25%, and B: 0.002 to 0.015%, Al: 0.05% or less, and including, in the flux, TiO2 conversion value: 3 to 8%, Al2O3 conversion value: 0.1 to 0.6%, SiO2 conversion value: 0.2 to 1.0%, ZrO2 conversion value: 0.20 to 0.65%, Mg: 0.2 to 0.8%, F conversion value: 0.05 to 0.25%, Na conversion value: 0.02 to 0.10%, and K conversion value: 0.05 to 0.20%.
Abstract:
The present invention provides the following: a covered flux which has a low chromium content and which can improve the fatigue strength of a weld in additional welding; and a covered electrode. The covered flux used for a covered electrode has a composition that contains, relative to the total mass of the covered flux, 35-55 mass % of a metal carbonate (in terms of CO2), 10-30 mass % of a metal fluoride (in terms of F), and 8.5-20 mass % of Mn and/or 7.5-20 mass % of Ni. In addition, the covered electrode is obtained by coating an iron-based core wire with this covered flux.
Abstract:
This disclosure relates generally to welding, and more specifically, to submerged arc welding (SAW). In an embodiment, a welding system includes a gas supply system configured to provide a gas flow. The system also includes a wire supply system configured to provide welding wire, and a flux supply system configured to provide flux near a welding arc during submerged arc welding (SAW). The system further includes a welding torch assembly configured to receive the gas flow and the welding wire and to deliver the gas flow and the welding wire near the welding arc during SAW.
Abstract:
The present invention provides a flux-cored welding wire comprising a shell having a tubular cavity, which accommodates flux. The shell is made of 400 series stainless steels. The deposited metal formed after the welding using the flux-cored welding wire of the present invention has more uniform chemical compositions. Because the loss of chromium during the transition to the deposited metal is less than 0.1%, recourses is saved and welding cost is reduced. The filling ratio of the flux-cored welding wire of the present invention is 5%-25% (preferably 10%-20%). As a result, not only the stability of the compositions in the flux is increased, but also the disadvantages to the manufacture process caused by high filling ratio are avoided. The flux-cored welding wire of the present invention will not be rusty even after it is exposed to the air for a long time.
Abstract:
The invention described herein pertains generally to boric acid free flux composition in which boric acid and/or borax is substituted with a molar equivalent amount of potassium tetraborate tetrahydrate. In some embodiments, a phthalocyanine pigment is used to effect a color change at activation temperature.
Abstract:
A system for producing chemicals, such as, ethylene or gasoline, at high temperature (above 1100 degrees C.) having a feedstock source. The system includes a chemical conversion portion connected with the feedstock source to receive feedstock and convert the feedstock to ethylene or gasoline. The conversion portion includes a coil array and a furnace that heats the feedstock to temperatures in excess of 1100° C. or 1200° C. or even 1250° C. or even 1300° C. or even 1400° C. A method for producing chemicals, such as ethylene or gasoline, at high temperature.
Abstract:
A method for manufacturing a thermally deformable component for high thermal loads, includes: providing a first area of the component with a first metallic material by a generative laser process, or making the first area of the first metallic material; providing a second area of the component with a second metallic material by a generative laser process, or making the second area of the second metallic material; where at least one of the metallic materials is deposited by the generative laser process, and a ratio of a linear expansion coefficient α1 of the first metallic material and of a linear expansion coefficient α2 of the second metallic material is as: α 2 ( T 2 ) α 1 ( T 1 ) = x T 1 - T 0 T 2 - T 0 , where x=0.5 to 1; T1=mean operating temperature on a hot side; T0=reference temperature; T2=mean operating temperature on a cold side.
Abstract:
The invention described herein pertains generally to boric acid free flux composition wherein in some embodiments, a phthalocyanine pigment is used to effect a color change at activation temperature.
Abstract:
An assembly including a ceramic body. The assembly comprises a tungsten coupling attached to the ceramic body with a first joint that forms a first helium tight seal between the ceramic body and the tungsten coupling and where the first helium tight seal maintains its integrity at a temperature over 400° C. The assembly includes a metal body attached to the tungsten coupling with a second joint that forms a second helium tight seal between the metal body and the tungsten coupling and where the second helium tight seal maintains its integrity at a temperature over 400° C. A method. A mixture. A coupling.